
NASA/TM-2013-217377 

  

Effects of the 8 psia / 32% O2 Atmosphere on the 

Human in the Spaceflight Environment 
 

 

Jason Norcross, MS  

Peter Norsk, MD, dr. med. 

Jennifer Law, MD, MPH 

Diana Arias, MS 

Johnny Conkin, PhD 

Michele Perchonok, PhD 

Anil Menon, MD, MPH 

Janice Huff, PhD 

Jennifer Fogarty, PhD 

James H. Wessel, III, MS 

Sandra Whitmire, PhD 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

June 2013 

https://ntrs.nasa.gov/search.jsp?R=20130013505 2020-06-24T01:17:20+00:00Z



 

NASA STI Program ... in Profile 

 

Since its founding, NASA has been dedicated 

to the advancement of aeronautics and space 

science. The NASA scientific and technical 

information (STI) program plays a key part in 

helping NASA maintain this important role. 

 

The NASA STI program operates under the 

auspices of the Agency Chief Information 

Officer. It collects, organizes, provides for 

archiving, and disseminates NASA’s STI. The 

NASA STI program provides access to the NASA 

Aeronautics and Space Database and its public 

interface, the NASA Technical Report Server, 

thus providing one of the largest collections of 

aeronautical and space science STI in the world. 

Results are published in both non-NASA channels 

and by NASA in the NASA STI Report Series, 

which includes the following report types: 

 

 TECHNICAL PUBLICATION. Reports of 

completed research or a major significant 

phase of research that present the results of 

NASA Programs and include extensive data 

or theoretical analysis. Includes compilations 

of significant scientific and technical data and 

information deemed to be of continuing 

reference value. NASA counterpart of peer-

reviewed formal professional papers but has 

less stringent limitations on manuscript length 

and extent of graphic presentations. 

 

 TECHNICAL MEMORANDUM. Scientific 

and technical findings that are preliminary or 

of specialized interest, e.g., quick release 

reports, working papers, and bibliographies 

that contain minimal annotation. Does not 

contain extensive analysis. 

 

 CONTRACTOR REPORT. Scientific and 

technical findings by NASA-sponsored 

contractors and grantees. 

 CONFERENCE PUBLICATION. Collected 

papers from scientific and technical 

conferences, symposia, seminars, or other 

meetings sponsored or co-sponsored  

by NASA. 

 

 SPECIAL PUBLICATION. Scientific, 

technical, or historical information from 

NASA programs, projects, and missions, 

often concerned with subjects having 

substantial public interest. 

 

 TECHNICAL TRANSLATION. English-

language translations of foreign scientific 

and technical material pertinent to  

NASA’s mission. 

 

Specialized services also include creating 

custom thesauri, building customized databases, 

and organizing and publishing research results. 

 

For more information about the NASA STI 

program, see the following: 

 

 Access the NASA STI program home page 

at http://www.sti.nasa.gov 

 

 E-mail your question via the Internet to 

help@sti.nasa.gov 

 

 Fax your question to the NASA STI Help 

Desk at 443-757-5803 

 

 Phone the NASA STI Help Desk at   

443-757-5802 

 

 Write to: 

NASA STI Help Desk 

NASA Center for AeroSpace Information 

7115 Standard Drive 

Hanover, MD 21076-1320 

  

  



 

NASA/TM-2013-217377 

  

Effects of the 8 psia / 32% O2 Atmosphere on the 

Human in the Spaceflight Environment 
 

 

Jason Norcross, MS  

Peter Norsk, MD, dr. med. 

Jennifer Law, MD, MPH 

Diana Arias, MS 

Johnny Conkin, PhD 

Michele Perchonok, PhD 

Anil Menon, MD, MPH 

Janice Huff, PhD 

Jennifer Fogarty, PhD 

James H. Wessel, III, MS 

Sandra Whitmire, PhD 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

June 2013  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Available from: 

 

NASA Center for AeroSpace Information National Technical Information Service 

7115 Standard Drive 5285 Port Royal Road 

Hanover, MD 21076-1320 Springfield, VA 22161 

301-621-0390 703-605-6000 

This report is also available in electronic form at http://ston.jsc.nasa.gov/collections/TRS/



 

i 
 

Table of Contents 
Acronyms ..................................................................................................................................................... iv 

Executive Summary ....................................................................................................................................... 1 

Purpose ......................................................................................................................................................... 2 

Background ................................................................................................................................................... 2 

Why and When 8/32 ................................................................................................................................. 3 

Important Changes since the 2006 EAWG Final Report ........................................................................... 3 

Constellation Program Cancellation ..................................................................................................... 4 

MMSEV and Suitport Development ...................................................................................................... 4 

Corrected EAWG Equivalent Air Altitudes ............................................................................................ 4 

Independent Pressure Effect on Hypoxic Dose ..................................................................................... 7 

Visual Impairment / Intracranial Pressure Syndrome ........................................................................... 7 

Elevated Carbon Dioxide on ISS ............................................................................................................ 7 

Literature Review and Design Reference Mission Considerations ............................................................... 8 

Design Reference Missions ....................................................................................................................... 8 

EVA Frequency and Spaceflight Considerations ....................................................................................... 9 

Hypoxia-Mediated Physiologic Concerns .................................................................................................... 10 

Vision Impairment / Intracranial Pressure Syndrome ............................................................................ 10 

Sensorimotor Performance ..................................................................................................................... 12 

Sensorimotor Performance during Spaceflight .................................................................................. 12 

Sensorimotor Performance and Hypoxia ............................................................................................ 12 

Sensorimotor Performance Conclusion .............................................................................................. 13 

Acute Mountain Sickness ........................................................................................................................ 14 

Description .......................................................................................................................................... 14 

AMS Risk Specific to 8/32 Condition ................................................................................................... 16 

Mitigations .......................................................................................................................................... 16 

Decompression Sickness ......................................................................................................................... 17 

Exercise and Cardiovascular Performance .............................................................................................. 17 

Exercise Performance during Spaceflight ........................................................................................... 17 

Exercise Performance and Hypoxia .................................................................................................... 18 

Cardiovascular System Performance and Spaceflight ........................................................................ 18 

 



ii 
 

Cardiovascular System Performance and Hypoxia ............................................................................. 18 

Exercise and Cardiovascular Performance Conclusion ....................................................................... 19 

Immune System ...................................................................................................................................... 19 

Oxidative Stress and Damage ................................................................................................................. 20 

Nutrition and Bone ................................................................................................................................. 20 

Nutrition during Spaceflight ................................................................................................................ 20 

Nutrition and Hypoxia ......................................................................................................................... 20 

Nutrition and Bone Conclusion ........................................................................................................... 21 

Behavioral Health and Human Performance Risks ................................................................................. 21 

Team ................................................................................................................................................... 21 

Anxiety ................................................................................................................................................ 22 

Fatigue................................................................................................................................................. 22 

Psychomotor ....................................................................................................................................... 22 

Perception ........................................................................................................................................... 23 

Cognition, Memory and Attention ...................................................................................................... 23 

Neural Structural Changes .................................................................................................................. 23 

Behavioral Health and Human Performance Conclusion.................................................................... 24 

Sleep ........................................................................................................................................................ 24 

Sleep during Spaceflight ...................................................................................................................... 24 

Sleep and Hypoxia ............................................................................................................................... 24 

Space Radiation ....................................................................................................................................... 25 

Exploration Medical Capability ............................................................................................................... 27 

Overall Synergistic Effects of 8/32 and Spaceflight Environment .......................................................... 28 

8/32 EVA Considerations ............................................................................................................................ 31 

General Medical Concerns about Frequent EVAs ................................................................................... 31 

Behavioral Health Implications for an EVA-Intensive Mission ................................................................ 32 

Decreased Risk of Injury and Impaired Performance during EVA .......................................................... 32 

8/32 Pressure Mediated Considerations .................................................................................................... 33 

Increased Insensible Water Loss ............................................................................................................. 33 

Advanced Food Technology .................................................................................................................... 33 

Acoustics ................................................................................................................................................. 34 

Crew Health Care Systems ...................................................................................................................... 34 



iii 
 

Human Health and Performance Disposition of the 8/32 Environment .................................................... 35 

Available ppO2 Enrichment from 8/32 to 8.2/34 ........................................................................................ 36 

8.2/34 Comparison to 10.2/26.5............................................................................................................. 37 

Human Health and Performance Risk Profile Changes from the 8/32 to 8.2/34 Environment ............. 39 

Recommendations and Forward Work ....................................................................................................... 39 

Additional Analyses Needed for 8.2/34 Environment ............................................................................ 39 

Current Research Efforts in Need of Better Understanding ................................................................... 40 

Proposed New Research Needs .............................................................................................................. 40 

Flight Demonstration of the 8.2/34 Environment .................................................................................. 41 

General Technology Recommendations ................................................................................................. 41 

Considerations for Transitioning Between Environments ...................................................................... 41 

Conclusion ................................................................................................................................................... 43 

Acknowledgements ..................................................................................................................................... 43 

Works Cited ................................................................................................................................................. 44 

 



iv 
 

Acronyms 
ADP adenosine diphosphate  

AFT Advanced Food Technology  

AMS  acute mountain sickness  

ARED advanced resistive exercise device 

ATP adenosine triphosphate 

CBF cerebral blood flow 

CHeCS Crew Health Care System  

CHI Crew Health Index  

CMS Countermeasures System  

CNS central nervous system 

CO2  carbon dioxide 

CRT complex reaction time  

CSA-CP compound-specific analyzers for combustion products  

CSA-O2 compound specific analyzers for oxygen  

CSF  cerebrospinal fluid  

DCS  decompression sickness  

DRATS Desert Research and Technology Studies 

DRM design reference mission 

EAA equivalent air altitude   

EAWG Exploration Atmospheres Working Group  

ECLSS  Environmental Control and Life Support Systems  

EHS Environmental Health System  

EMU extravehicular mobility unit 

EVA extravehicular activity 

EVAC evacuation  

ExMC Exploration Medical Capability  

HEOMD  Human Exploration and Operations Mission Directorate  

HH hypobaric hypoxia  

HHP Human Health and Performance  

HIF-1 hypoxia-inducible factor 1 

HMS Health Maintenance System 



v 
 

HRP Human Research Program 

HUT hard upper torso  

ICP  intracranial pressure  

IMM Integrated Medical Model  

ISS International Space Station 

IVA intravehicular activity  

JSC  Johnson Space Center  

kPa kilopascals 

LEO low-Earth orbit 

LET low-linear energy transfer  

LLSQ Lake Louise symptom questionnaire 

LOCL loss of crew life  

LSAH Lifetime Surveillance of Astronaut Health  

NEA near-Earth asteroid  

N2 nitrogen 

mmHg  millimeters of Mercury 

MMSEV  Multi Mission Space Exploration Vehicle  

NEA  near-Earth asteroid  

NH  normobaric hypoxia  

NSBRI National Space Biomedical Research Institute  

OSaD oxidative stress and damage  

O2 oxygen 

PAO2  alveolar O2 partial pressure  

PH2O  water vapor partial pressure  

PIO2 inspired O2 partial pressure 

ppO2 partial pressure of O2 

psia pounds per square inch absolute 

SaO2 O2 saturation 

SMAC Spacecraft Maximum Allowable Concentration  

SMEMCL Space Medicine Exploration Condition List  

TBDM Tissue Bubble Dynamics Model 

UPR unpressurized rover 



vi 
 

VGE venous gas emboli  

VIIP visual impairment/intracranial pressure  

VO2max maximal O2 consumption 

 

 



 

1 
 

Executive Summary 
Extravehicular activity (EVA) is at the core of a manned space exploration program. Some elements of 

exploration may be safely and effectively performed by robots, but certain critical elements will require 

the trained, assertive, and reasoning mind of a human crewmember. To effectively use these skills, 

NASA needs a safe, effective, and efficient EVA component integrated into the human exploration 

program. The EVA preparation time should be minimized and the suit pressure should be low to 

accommodate EVA tasks without undue fatigue, physical discomfort, or suit-related trauma. 

Commissioned in 2005, the Exploration Atmospheres Working Group (EAWG) had the primary goal of 

recommending to NASA an internal environment that allowed efficient and repetitive EVAs for missions 

that were to be enabled by the former Constellation Program. At the conclusion of the EAWG meeting, 

the 8.0 psia and 32% oxygen (O2) environment were recommended for EVA-intensive phases of 

missions.  

As a result of selecting this internal environment, NASA gains the capability for efficient EVA with low 

risk of decompression sickness (DCS), but not without incurring additional negative stimulus of 

hypobaric hypoxia to the already physiologically challenging spaceflight environment. This paper 

provides a literature review of the human health and performance risks associated with the 8 psia / 32% 

O2 environment. Of most concern are the potential effects on the central nervous system including 

increased intracranial pressure, visual impairment, sensorimotor dysfunction, and oxidative damage. 

Other areas of focus include validation of the DCS mitigation strategy, incidence and treatment of acute 

mountain sickness (AMS), development of new exercise countermeasures protocols, effective food 

preparation at 8 psia, assurance of quality sleep, and prevention of suit-induced injury.  

As a first effort, the trade space originally considered in the EAWG was reevaluated in an effort to find 

ways to decrease the hypoxic dose by further enriching the O2% or increasing the pressure. After 

discussion with the NASA engineering and materials community, it was determined that the O2 could be 

enriched from 32% to 34% and the pressure increased from 8.0 to 8.2 psia without significant penalty. 

These two small changes increase alveolar O2 pressure by 11 mmHg, which is expected to significantly 

benefit crewmembers. The 8.2/34 environment (inspired O2 pressure = 128 mmHg) is also 

physiologically equivalent to the staged decompression atmosphere of 10.2 psia / 26.5% O2 (inspired O2 

pressure = 127 mmHg) used on 34 different shuttle missions for approximately a week each flight. Once 

decided, the proposed internal environment, if different than current experience, should be evaluated 

through appropriately simulated research studies. In many cases, the human physiologic concerns can 

be investigated effectively through integrated multi-discipline ground-based studies. Although missions 

proposing to use an 8.2/34 environment are still years away, it is recommended that these studies begin 

early enough to ensure that the correct decisions pertaining to vehicle design, mission operational 

concepts, and human health countermeasures are appropriately informed. 
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Purpose 
The purpose of this report is to evaluate the human health and performance implications associated 

with the proposed exploration environment of 8.0 psia / 32% O2 through a combination of literature 

review and analysis. 

Background 
Over the past several decades, NASA has operated spacecraft habitable elements and spacesuits at a 

variety of different atmospheres. Early missions during the Gemini and Apollo programs were short 

duration and relied on low pressure, pure O2 environments. Skylab missions were longer in duration, but 

still employed a low pressure (5 psia), high O2 (70%) environment. NASA’s more recent programs, 

including the Space Shuttle Program and International Space Station (ISS) programs have operated at an 

Earth equivalent sea level atmosphere of 14.7 psia and 21% O2. Selection of this atmosphere facilitated 

international partnerships and allowed in-flight scientific studies to have ground-based controls, with 

gravity as the primary variable of interest.  

In 2005, the EAWG was convened to formulate recommendations on the designs of habitable internal 

environments to feed requirements for the development of vehicles during the Constellation Program 

[1]. The process used to select among several candidate environments is detailed in the EAWG final 

report, which was first published as an internal NASA document [2] and then later as a NASA Technical 

Paper [1]. The primary trade space applied to the EAWG analysis for the lunar and Mars habitat and 

surface spacesuit designs were hypoxia, flammability, and DCS. 

The EAWG recommendations were as follows: 

 Launch and transport vehicle should operate within the existing ISS and shuttle standard 

environment designs of 14.7 psia / 21% O2 and 10.2 psia / 26.5% O2  

 Lunar and Mars landers should operate at both 10.2 psia / 26.5% O2 and 8.0 psia / 32% O2 

 Surface spacesuits should operate at 100% O2 and at a pressure range of 3.5 to 8.0 psia 

 Long-duration lunar and Mars habitats should operate at 8.0 psia / 32% O2 nominally with an 

option to depress further to 7.6 psia / 32% O2  

 Atmospheric recommendations assumed a control box of ± 0.2 psia total pressure and ± 2.0% O2 

concentration 

The consensuses coming out of the EAWG were the recommendations for a lower pressure surface 

habitat and a surface spacesuit with a variable operating pressure range. The 8 psia / 32% O2 

(henceforth referred to as 8/32) environment was selected because it was considered to be a mildly 

hypoxic dose with acceptable flammability risk and low O2 prebreathe overhead to maintain acceptable 

DCS risk [1]. The proposed forward work related to human physiology was almost solely related to DCS, 

with no mention of hypoxia research. 

The EAWG recommendations were developed through a multi-discipline working group and concurred 

upon by the heads of the Johnson Space Center (JSC) Engineering, Space and Life Sciences, and Flight 

Crew Operations Directorates as well as the manager of the JSC Extravehicular Activity Office. However, 
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attempts to move forward with vehicle designs based on the EAWG report were met with mixed 

approval because the recommendations were not captured anywhere outside of the Constellation 

Program documentation. Mixed approvals were the case until the recent memorandum by NASA Human 

Exploration and Operations Mission Directorate (HEOMD) Associate Administrator, which directed 

programs under HEOMD to begin the work to enable the updated Exploration Atmosphere of 8.2 psia 

and 34% O2 [3]. Although forward work will focus on the 8.2/34 environment, the purpose of this paper 

is still to document the human health and performance impacts of the 8/32 environment. 

Understanding these potential impacts led to the less-hypoxic 8.2/34 environment and highlights the 

remaining human performance concerns that still need to be addressed to enable an Exploration 

Atmosphere for long-term human habitation. 

Why and When 8/32 
Multiple reasons were proposed for the use of the 8/32 environment. A primary benefit of this 

atmosphere is a reduction in O2 prebreathe requirements for EVA. With the 8/32 option, it is expected 

that a 15-minute prebreathe may be all that is necessary to achieve acceptable risk of DCS during EVA. 

An 8 psia cabin pressure also allows operational use of a suitport, which greatly reduces the complexity 

and overhead associated with EVA suit donning. The current expectation is that an astronaut could don 

the EVA suit through a suitport and complete all necessary checkout procedures and EVA prep during 

this 15-minute prebreathe window. Also, suitport-compatible suits are proposed to be variable-pressure 

suits capable of operating from the 8 psia cabin pressure down to the expected EVA-operating suit 

pressure of 4.3 psia. A variable-pressure suit also provides immediate treatment capability for DCS, 

because the suit could be repressurized to 8 psia in the field without requiring reentry into the cabin. 

Furthermore, the short transition times between suit and cabin allow for intermittent recompressions, 

further reducing the risk of DCS. 

Beyond control of DCS to acceptable risk levels, the 8/32 environment coupled with suitport operations 

is a paradigm shift from NASA’s ISS and shuttle EVA protocols. Unlike the ISS construction and 

maintenance EVAs, which were well understood and very specific, exploration EVAs will be driven by 

choices made at the destination. Exploration crews need a robust and flexible EVA capability, which is 

provided by coupling the 8/32 environment with suitport operations. This combination provides an on-

demand EVA capability including short-duration EVA, multiple EVAs per day, and single-person EVA. 

Application of the 8/32 environment is only needed during high EVA-frequency phases of a mission. The 

8/32 environment is not needed for launch or transit to the destination, although the capability should 

be considered for all habitable elements to ensure transitions between different elements can be 

accomplished during contingency situations. Currently, any element expected to operate at the 8/32 

environment (other than the EVA suit) will also be capable of repressurizing and operating at 14.7 psia 

and 21% O2.  

Important Changes since the 2006 EAWG Final Report 
Much has changed at NASA since the 2006 EAWG recommendations, including cancellation of the 

Constellation Program, development of the Multi Mission Space Exploration Vehicle (MMSEV) concept, 
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movement toward a Capability-Driven Framework for space exploration, advances in our understanding of 

human adaptation to the spaceflight environment, and the identification of new human risks and hazards.  

Constellation Program Cancellation 

One of the largest changes since the EAWSG was the cancellation of the Constellation Program. This 

program featured a clear target at the moon with rapidly evolving operational concept development. 

The requirement for an Exploration Atmosphere of 8/32 was kept in the Constellation Architecture 

Requirements Document. It is difficult to quantify how much this affected implementation of the EAWG 

recommendations for vehicle requirements, research, and development. It could be that discontinuity 

with personnel in the intervening years coupled with a change from a well-defined lunar target to a 

Capability-Driven Framework contributed to some of the concerns about using the EAWG report as an 

approved baseline.  

MMSEV and Suitport Development 

Over this same time period, new space exploration vehicles and spacesuits were designed and 

developed in accordance with the recommendations from the EAWG. One of these vehicles is the 

MMSEV, which initially started out as a small pressurized rover for the lunar environment. It has since 

developed additional capability beyond lunar and Mars surface operations to now include variants with 

operating capacity in the microgravity environment as well, either as a way-station habitat or as a near-

Earth asteroid (NEA) exploration vehicle. The MMSEV assumed the 8/32 environment as the NASA 

baseline and has developed both the suitport and a variable pressure rear-entry suitport compatible 

EVA suit. Use of a variable pressure EVA suit with suitport enabled by the 8/32 internal environment 

yields several benefits. From an operational standpoint, NASA gains the capability for single-person EVA, 

short EVA, multiple EVAs in a single day, enhanced waste removal using a suitport transfer module, 

reduced consumables, and high work efficiency index. In terms of safety, there is reduced overhead for 

meeting acceptable DCS risk, multiple vehicle reentry points, and immediate capability for DCS 

treatment through repressurization of the EVA suit.  

Corrected EAWG Equivalent Air Altitudes 

One reason for the general agreement in the 2005 to 2006 timeframe was that the 8/32 environment 

represented a mild hypoxic exposure because the assigned equivalent air altitude (EAA) was thought to 

be 1,524 m (5,000 ft) [1] [2]. However, the EAA was based on ambient dry-gas partial pressure of O2 

(ppO2) instead of inspired O2 partial pressure (PIO2) under conditions where the fraction of inspired O2 

(FIO2) was ≠ 0.209. In other words, the breathing gas was not air but enriched O2 at low ambient 

pressure (PB). Simply referencing an air altitude table with the correct hypoxic ppO2 [4] did not 

completely account for the contribution of water vapor partial pressure (PH2O) found to reduce ppO2 at 

higher altitude. The error was recently discovered, long after completing the in-house and external 

reviews of recommendations from the EAWG. 

The EAA for the 8/32 environment is actually slightly more than 1,830 m (6,000 ft), which properly 

accounts for a water vapor pressure (PH2O) of 47 mmHg at 37°C (98.6°F) to reduce ppO2 at 8.0 psia 

while breathing 32% O2. The computed PIO2 for this condition is 117 mmHg through the equation: PIO2 = 

(PB – 47) * FIO2, where PB is ambient pressure of 414 mmHg (8.0 psia), 47 mmHg is PH20, and FIO2 is 0.32, 
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the dry-gas fraction of inspired O2. A PIO2 of 117 mmHg is equivalent to breathing air at an altitude of 

1,880 m (6,170 ft), as indicated in the air altitude table (Figure 1) [5]. Most experts would still consider 

this exposure mild hypoxia.  

 

Figure 1. Equivalent Air Altitude Table. 

In the EAWG report (NASA TP-2010-216134) [1], there are several instances (page 1, page 16 Table 10, 

page 116) and various places in JSC-63309 [2]), where the assigned EAA was based on ambient dry-gas 

ppO2 instead of PIO2 under conditions where FIO2 was ≠ 0.209. Table 1 lists the atmospheres in Table 10 

from NASA-TP-2010-216134 and shows the incorrect EAA based on ppO2; Table 2 shows the correct EAA 

based on PIO2. The correct values for EAA should be substituted for the incorrect values when one reads 

References 1 or 2. Both of these tables use the equations where ppO2 = PB * FIO2 and PIO2 = (PB - 47) * 

FIO2. 
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Physiologists talk about O2 partial pressure in terms of “wet” inspired O2 partial pressure, designated as 

PIO2, or even alveolar O2 partial pressure (PAO2). As evidence, PIO2 is how the risk of AMS is discussed in 

the Conkin and Wessel critique of the equivalent air altitude model [6]. Engineers talk about O2 partial 

pressure in terms of dry-gas ambient O2 partial pressure, designated as ppO2. Engineers prefer ppO2 

because this is what Environmental Control and Life Support Systems (ECLSS) O2 sensors provide. This 

results in potential confusion when interpreting hypoxic ppO2, especially when an FIO2 ≠ 0.209 is 

combined at higher altitude while the contribution of saturated tracheal water vapor pressure at 

reducing PIO2 becomes increasingly more significant at lower PB. 

For example, the current NASA STD 3001 Vol. 2 (V2 6003, below) requires a sustained ppO2 of 155 

mmHg (3.0 psia) or higher. At 8.0 psia, an ECLSS sensor would read 155 mmHg and meet this standard, 

but the PIO2 would be slightly hypoxic at 137 mmHg (normoxic PIO2 = 149 mmHg). Modification of this 

NASA standard is required in two ways. First, if the overall goal is to maintain physiologic normoxia, then 

the standard should be updated into a table that accounts for differences in ppO2 and PIO2 as a function 

of PB and the lung PH20 of 47 mmHg should be included. Second, the use of an alternative exploration 

environment, such as 8/32, is currently precluded by this standard. Thus, the standard needs to be 

updated to reflect that for certain high EVA content phases of a mission, a mildly hypoxic environment 

can be used for a given period of time. Research will be needed to determine the acceptable duration 

for an alternative exploration environment.  

“6.2.1.2 O2 Partial Pressure Range for Crew Exposure [V2 6003] 

The system shall maintain ppO2 to within the physiologic range of 20.7 kPa < ppO2 ≤ 50.6 kPa (155 

mmHg < ppO2 ≤ 380 mmHg, 3.0 psia < ppO2 ≤ 7.35 psia). Rationale: The system needs to maintain 

ppO2 to the specified range throughout all non-joint operations, docked operations, and EVA. The 

range provided is the physiological values for indefinite human exposure without measurable 

impairments to health or performance.” 

Table 1. Incorrect EAA Based on ppO2 

PB psia (mmHg) FIO2 ppO2 psia (mmHg) Incorrect EAA (m) Incorrect EAA (ft) 

10.2 (527) 0.265 2.70 (140) 1067 3,500 

8.0 (414) 0.32 2.56 (132) 1524 5,000 

7.6 (393) 0.32 2.43 (126) 1981 6,500 

 

Table 2. Corrected EAA Based on PIO2 

PB psia (mmHg) FIO2 PIO2 psia (mmHg) Incorrect EAA (m) Correct EAA (ft) 

10.2 (527) 0.265 2.46 (127) 1268 4,160 

8.0 (414) 0.32 2.27 (117) 1880 6,170 

7.6 (393) 0.32 2.14 (111) 2286 7,500 
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Independent Pressure Effect on Hypoxic Dose 

Although not a new debate, recently there has been considerable discussion on whether normobaric 

hypoxia (NH) elicits the same hypoxic symptoms as hypobaric hypoxia (HH) [7] [8] [9]. In many cases, the 

differences may not reach statistical or clinical significance, but the general trend is one that seems to 

indicate that almost all measurable changes associated with hypoxic exposures trend worse in the case 

of HH as compared to NH. Given that the 8/32 environment is an engineered environment and does not 

exist in nature; a standard EAA may not be fully representative of the hypoxic stress. An 8 psia PB is 

associated with an actual altitude of 4,877 m (16,000 ft). It is the enrichment of O2 from 21% to 32% that 

reduces the hypoxic stress to an EAA of approximately 1,830 m (6,000 ft). It is unknown whether the 

increased hypobaric exposure will increase the hypoxic dose, but at least one literature review 

suggested that the 8/32 environment increased the risk of one known hypoxic symptom, AMS, from the 

proposed EAA of about 1,830 m (6,000 ft) to 2896 m (9,500 ft) [10]. This hypothesis is based on 

literature review and a proposed model and has not been validated, but it does point to the need for 

human exposure research in the 8/32 environment. A more recent review lends further support that NH 

and HH are not equivalent for acute and subacute exposures and suggests that using NH as a surrogate 

for HH during chronic exposures is inappropriate [11]. 

Research is warranted to evaluate a possible PB effect on hypoxic adaptations. Results from these 

studies will aid in the understanding of human physiology in the 8/32 environment as well as inform the 

scientific community on how best to proceed with hypoxia research. In research settings, it is easier to 

design and operate systems that manipulate PIO2 by FIO2 rather than PB. However, in situations where 

the PB effect is significant, then human or animal research will require true ascent-to-altitude or 

hypobaric chamber studies. 

Visual Impairment / Intracranial Pressure Syndrome 

Because of its prevalence and potential mission impact, visual impairment / intracranial pressure (VIIP) 

is considered the top human system risk in the ISS Program. Currently, VIIP is a poorly understood 

syndrome with potential for permanent damage to the ocular and central nervous systems. The changes 

that have been observed to date are developing in microgravity without additional exposure to HH. 

While the pathophysiology of VIIP is under active investigation, the addition of HH to the spaceflight 

environment may exacerbate the problem.  

Elevated Carbon Dioxide on ISS 

Elevated carbon dioxide (CO2) is a known problem in a closed system with humans in the loop. On Earth, 

the ambient CO2 concentration is about 0.23 mmHg (0.03%). In spacecraft, it is not practical to control 

CO2 to such low levels because of power and consumable constraints, and CO2 levels on the ISS have 

typically been 2.3 to 5.3 mmHg (0.5 ± 0.2%), a ten-fold increase compared to terrestrial levels [12]. Over 

the years, ISS crewmembers have been found to develop CO2-related symptoms such as headache and 

lethargy at lower-than-expected CO2 levels, and symptoms tend to resolve when ambient CO2 is 

decreased [13]. While work to quantify this association is ongoing, chronic CO2 exposure appears to be a 

contributing factor to several in-flight medical issues, including VIIP [13] [14]. The CO2 elevation will 

likely complicate the adaptation to a mildly hypoxic environment, potentially making physiologic 

symptoms worse. 
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Literature Review and Design Reference Mission Considerations 
Representatives from NASA’s Human Research Program (HRP), EVA Physiology Laboratory, and Space 

Medicine Group contributed different points of view and areas of expertise to this report. The focus was 

to evaluate the expected and possible human impacts related to living in space at the proposed 8/32 

environment. To evaluate potential risk, the team reviewed literature from their respective disciplines 

on the effects of mild hypoxia, primarily from research done at altitudes of 1,830 to 3050 m (6,000 to 

10,000 ft). The 8/32 environment does not exist in nature, but approximates to an EAA of about 1,880 m 

(6,000 ft). Control box (32 ± 2%) uncertainty stretches the possible EAA to 2,438 m (8,000 ft). Finally, the 

possibility of an independent pressure effect on hypoxia has been proposed, with one model proposed 

in a review suggesting that the 8/32 environment would present an AMS risk of 2,896 m (9,500 ft) [10]. 

In some cases, literature from higher altitudes was reviewed if no literature was available at the lower 

altitude range.  

Design Reference Missions 
Nine representative design reference missions (DRMs) have been proposed by the Human Spaceflight 

Architecture Team as a notional program to extend human presence beyond low-Earth orbit (LEO), to 

the Cis-Lunar space, near-Earth asteroids (NEAs), the Martian moons, and Mars. As Table 3 shows, these 

exploration missions will have four to six crewmembers, last up to 1,200 days, and baseline many EVAs 

for surface missions.  

 

The principal goal is to maintain the crewmembers’ health so they can accomplish their mission 

objectives. This means a robust health maintenance program that provides countermeasures against the 

known physiologic changes to both the space environment (hypogravity and hypercapnia) and the 

proposed spacecraft environment (HH), and medical care capability that is commensurate with the 

duration of the mission, communication delays, and distance from definitive medical care facilities. 

Thus, those missions beyond LEO that will last more than 1 to 2 weeks (DRM 5-9) will require 

increasingly autonomous medical capability with increasing distance from Earth. At the same time, we 

recognize that some physiologic questions cannot be answered until crews start flying these missions, or 

Table 3. Representative Design Reference Missions (modified from: “Focused Human Exploration Design 
Reference Missions,” M. Rucker and L. Toups, 3 May 2012) 

DRM Destination Duration Crew EVA? Year 

1  Lunar Orbit  7 to 10 days  0  None  2017  

2  Lunar Orbit  10 to 14 days  4  None planned  2021  

3  Cis-Lunar  TBD  0  None  <2027  

4  LEO  <21 days  4  TBD <2027  

5  Cis-Lunar  30 to 180 day  4  Contingency  <2027  

6  Asteroid  <365 days  4  Few  >2025  

7  Lunar Surface  <33 days  4  Many  >2025  

8  Mars Moon  600 to 1200 days  4-6  TBD >2035  

9  Mars Surface  Up to 1,140 days  4-6  Many  >2035  
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until simulations of certain mission factors are performed on the ISS; therefore, engineering and 

operational controls should be in place to prevent such known issues as rapid transitions between 

atmospheres and chronically elevated CO2 levels. 

EVA Frequency and Spaceflight Considerations 
The planned scenarios currently being considered for future missions using the 8/32 environment 

involve a high number of EVAs. Although all of these scenarios will have a heavy EVA phases, this phase 

may take place at very different points in a mission. Crewmembers can reach the lunar surface or a Cis-

Lunar location within a few days. On the other hand, it will take several months to reach a NEA or Mars. 

Therefore, we have to consider the operational tempo and known physiologic changes as we look to 

potential impacts of the inclusion of the 8/32 environment.  

In the lunar and Cis-Lunar cases, spaceflight data from shuttle missions should be leveraged. In these 

cases, the transition to the 8/32 environment would superimpose adjustments to the hypobaric hypoxic 

environment with adjustments associated with adaptation to microgravity. The concern is that the 

combination of these adjustments in addition to a heavy-EVA mission profile may degrade the health 

and performance of astronauts who must maintain a high level of proficiency to accomplish mission 

goals [15]. The first 2 weeks of a spaceflight is a period of dynamic physiologic change in the 

crewmember. Primarily, physiologic adaptation to the new spaceflight environment includes: cephalad 

fluid shift, neurovestibular adaptation, susceptibility to space motion sickness, and changes in spatial 

orientation. These changes result in physical symptoms such as increased fatigue, headaches, reduced 

sleep, lack of appetite, back pain, etc., all of which can negatively impact mood and behavior. Cognitive 

processes such as focus and attention, memory recall, problem solving, and executive function may 

affect mission operations, which include highly technical and complex procedures [16].  

Space Shuttle missions, which typically lasted about 2 weeks, were regarded as high workload and fast-

paced, with little to no time available for “winding down” [17]. Crewmembers reported forgoing eating 

and sleeping to complete timeline objectives [18] [17]. Accordingly, objective data from spaceflight 

indicate that shuttle astronauts slept an average nightly duration of approximately 6 hours [19]. The 

increase in stress response and sleep deprivation increases the likelihood of errors. Therefore, effects of 

the slightly hypoxic environment must be considered with these operational data in mind. It could be 

expected that more severe detriments would result from the inclusion of a hypoxic environment. 

In the NEA and Mars cases, spaceflight data from ISS missions will be more appropriate for analysis. It 

will take up to 6 months to reach these locations, which nicely parallels the current length of an ISS 

mission. At the end of a 6-month ISS rotation, the crewmembers are going to be acclimatized the 

spaceflight microgravity environment; therefore, the problem of complicating the adaptation to 

spaceflight with the 8/32 environment is avoided. But the long-term issues associated with spaceflight 

will pose different challenges. Crewmembers may have signs or symptoms of the VIIP syndrome. They 

may have decrements in cardiovascular, muscular, and aerobic capacity if the current ISS 

countermeasures effectiveness cannot be maintained during transit. Transitioning to the 8/32 

environment in the midst of returning to a gravity environment (3/8-g on Mars) and adding a heavy EVA 

phase to the mission after months in space is a scenario where we have no operational experience. 
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Expected problems are less likely going to stem from acute overload, but rather the combination of 

negative chronic spaceflight adaptation that may worsen with exposure to a mildly hypoxic environment 

coupled with an increased EVA frequency. 

Hypoxia-Mediated Physiologic Concerns 
This section will discuss the physiologic concerns and impacts related to the expected hypoxic dose of the 

8/32 environment. Decreasing the O2 delivery to all the bodily organs and systems has an impact on all 

physiologic functions. However, the 8/32 environment only induces a mild hypoxic stimulus, which we 

would not be concerned about in itself on the surface of the Earth. We know that humans adapt well to 

altitude with a similar ambient O2 partial pressure as the 8/32 environment. Such an environment in 

combination with other spaceflight factors such as microgravity and space radiation is; however, of 

concern, because the additive and/or synergistic effects might impair human health and performance to 

an unacceptable risk level. In particular, the effects on brain and ocular physiology are of concern, because 

we lack knowledge as to how a decrease in ambient O2 partial pressure – however mildly – in space might 

affect the pressure in the brain and eyes and thus human performance. In addition, we do not know how 

the combinatorial effects of a mildly hypoxic atmosphere and mildly hyperoxic EVA suit atmosphere affects 

cellular pathways, and whether it induces oxidative stress and damage threatening human health to an 

unacceptable level. Consequently, the addition of mild hypoxia and its effect on the human system will be 

needed to augment existing NASA human research. Particular emphasis should be placed on brain and 

ocular function, sensorimotor performance, and cellular oxidative stress and damage. 

Vision Impairment / Intracranial Pressure Syndrome 
The VIIP syndrome was first described in 2006 with the observation of papilledema, vision changes, and 

increased intracranial pressure in long-duration astronauts returning from the ISS. However, postflight 

questionnaires obtained between 1989 and 2011 revealed that 23% of shuttle and 48% ISS long-

duration mission astronauts reported a subjective degradation in vision [20], suggesting that spaceflight-

induced visual impairment and intracranial hypertension may have been occurring in astronauts 

although the syndrome was not recognized until the technology advanced sufficiently to evaluate and 

look for it [21]. Based on a case definition developed by expert consensus, 15 cases have been identified 

out of 36 long-duration astronauts to date, although not all of these 36 astronauts have been fully 

evaluated. Although direct in-flight measurements have not been made, in-flight signs of papilledema, 

and postflight changes in brain imaging have documented evidence of elevated intracranial pressure 

(ICP). In addition, postflight lumbar puncture in four ISS crewmembers has indicated elevated ICP 

ranging from 21.0 to 28.5 cmH2O (normal range: 5 to 15 cmH2O). Of note, ICP may remain elevated long 

after flight in some of the returning symptomatic astronauts, over 18 months in one case [20]. 

Microgravity exposure induces a cephalad fluid shift likely resulting in elevated ICP. It is possible that the 

cephalad fluid shift accounts for a 50% increase in ICP in the microgravity environment compared to 1-g 

[22]. In addition, it is known that the average CO2 level is elevated on the ISS, which may further 

increase ICP due to its potent vasodilator effects. Up to an additional 12% increase in ICP may be 

attributed to current CO2 levels on ISS [23]. Thus, a combination of the microgravity-induced cephalad 
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fluid shift and high ambient CO2 levels very likely increases ICP in astronauts leading to known visual 

acuity problems and possible impact on cognitive brain function.  

One concern of HH alone is AMS (to be discussed further), which lies within the spectrum of high-

altitude headache to high-altitude cerebral edema. High-altitude cerebral edema is associated with 

increased ICP [24] [25] [26]. AMS itself appears to be strongly associated with increased optic nerve 

sheath diameter reflecting increased ICP [27]. Sutherland, et al. found that the optic nerve sheath 

diameter increased in 13 mountaineers from sea level to exposures at 2000, 3700, 5200, and 6400 m 

(6562, 12139, 17060, and 20997 ft) [28]. Increasing optic nerve sheath diameter has been found to 

correlate positively with ICP and is based on the fact that the subarachnoid cerebrospinal fluid (CSF) 

compartment communicates with the perioptic CSF space. Therefore, increases in intracranial CSF 

pressure are transmitted to the perioptic CSF space and may be measured as changes in the optic nerve 

sheath diameter. More directly, Yang, et al. found that upon exposure to an altitude of 4,000 m (13,123 

ft) for 2 hours, ICP measured by intraventricular catheter increased by 78% from 15.4 to 27.4 cmH2O in 

hypoxic goats compared to nonhypoxic goats [29]. Physiologically, any fall in O2 delivery results in 

vasodilation of cerebral vessels to increase brain blood flow and elevate ICP. With the addition of 

microgravity-induced intracranial hypertension, it is likely that astronauts would develop greater 

increases in ICP in an 8/32 environment than in 14.7/21. Even limited exposures to 8/32 may exacerbate 

VIIP in an additive or synergistic manner. 

At present, 42% of ISS crewmembers are affected by the VIIP syndrome and 15% of those severely in a 

normobaric, normoxic (14.7 psi/20.9% O2) environment. Because of its prevalence and potential mission 

impact due to visual and central nervous system (CNS) impairment, VIIP is considered the top human 

system risk in the ISS Program. It should be noted that the changes that have been observed to date are 

developing in microgravity without additional exposure to HH. The combinatorial effects of the 

spaceflight environmental factors such as microgravity and high ambient CO2 levels with an 8/32 

environment are unknown and could potentially negatively impact brain blood flow and cognitive 

abilities based on current knowledge of the VIIP syndrome.  

Moreover, in the setting of papilledema, hypoxia is expected to worsen optic nerve ischemia. Hypoxia at 

altitude is associated with optic disc swelling, hypothesized to be due to a hypoxia-induced increase in 

cerebral blood flow that disrupts the blood-brain barrier and results in cerebral edema [30] [31]. 

Altitude-associated optic disc swelling has been described since 1969 [26]; a recent study of 27 high-

altitude mountaineers by Bosch, et al. [30] found optic disc swelling in 59% of the climbers. 

Furthermore, high-altitude retinopathy, typically described as retinal vascular engorgement and 

tortuosity, can be associated with decreased visual acuity and cotton wool spots [32], two of the 

diagnostic hallmarks of VIIP [21]. There is enough overlap between spaceflight-induced VIIP and altitude 

illnesses to warrant precaution about intentionally adding HH to spaceflight. The concern is that an 8/32 

environment would worsen visual changes, potentially leading to decreased ability to perform tasks and 

possible permanent damage. 

As a result, we are concerned about an 8/32 environment for durations longer than a week, before we 

know more about the mechanisms of the VIIP syndrome and how to mitigate this risk. As forward work 
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relating to the 8/32 environment, we suggest adding an experimental arm to the current VIIP research 

plan, both regarding animal and human studies, to understand the additive or synergistic effects of the 

8/32 environment with known spaceflight factors to the VIIP syndrome. 

Sensorimotor Performance 

Sensorimotor Performance during Spaceflight 

Astronauts experience disturbances in sensorimotor function during periods of adaptive change on 

initial exposure to microgravity and on return to a gravity environment. These disturbances include 

spatial disorientation, space motion sickness, alterations in gaze control, and postflight postural 

instability, and gait ataxia [33] [34] [35] [36] [37] [38]. Importantly, sensorimotor disturbances are more 

profound as duration of exposure to microgravity increases. These changes can impact in-flight 

operational activities including spacecraft landing, docking, remote manipulation, and EVA performance. 

In addition, postflight postural and gait instabilities could prevent or extend the time required to make a 

nominal or an emergency egress from a spacecraft. 

Sensorimotor Performance and Hypoxia 

The retina is extremely sensitive to changes in O2; therefore, acute hypoxia can lead to decrement in 

visual function. These changes are less profound in the mild hypoxic range; however, performance 

decrements have been observed [39]. In one study that focused on visual performance specifically in the 

hypoxic range of 1,830 to 2,438 m (6,000 to 8,000 ft), mesopic vision was impaired [40]. Mesopic vision 

is visual performance in low-light levels but not quite dark conditions, equivalent to that experienced 

during twilight. Given potential low-light conditions during planetary operations, this decrease in visual 

performance may have operational implications.  

Mild hypoxia has also shown to have an effect on the postural control system [41] [42] [43]. Postural 

sway measured on subjects standing on a force plate was shown to increase compared to ground-level 

controls at simulated altitudes of 1,524, 2,438, and 3,048 m (5,000, 8,000, and 10,000 ft) [41]. The 

postural control system receives input from several sensory modalities including information from 

vision, the vestibular system, proprioception from joints, tendons, and muscles, and tactile information. 

These multiple sensory informational sources are integrated in the central nervous system to aid in the 

control of postural equilibrium. Therefore, a change in postural equilibrium control can serve as a 

sensitive indicator of mild hypoxic effects on multiple sensory systems along with the efficacy of their 

central integration. 

In terms of pilot flight control performance, exposure to mild hypoxia does not have a significant impact 

on manual control ability for tasks such as maintaining assigned altitudes and navigation; however, 

procedural errors appear to increase at the 3,048-m (10,000-ft) level [44]. These events include 

misdialing frequency codes and failure to follow air traffic control instructions. In a study using self-

report questionnaires to assess hypoxic symptoms of helicopter aircrew operating at altitudes below 

3,048 m (10,000 ft), aircrew reported potentially operationally significant symptoms of hypoxia at a 

mean altitude of 2,590 m (8,497 ft) [45]. 



13 
 

During gravitational transitions, sensorimotor systems undergo adaptive changes to match motor 

output to the prevailing environment. It is currently unknown what the impact of hypoxia is on this 

essential process of sensorimotor adaptive change. Does hypoxia hinder the adaptive response 

prolonging the period of sensorimotor disturbance experienced during gravitational transitions? If 

hypoxia interacts negatively with the nominal sensorimotor adaptive process, performance decrements 

including changes in dynamic visual acuity, postural and gait instability, and spatial disorientation may 

be exacerbated, impacting performance and mission success. In addition, there are well known 

vestibular-evoked responses recorded from respiratory muscle nerves that serve to provide adjustments 

in breathing and airway patency during movements and changes in posture [46]. It is possible that 

vestibular adaptation shortly following G-transitions may negatively impact the respiratory 

compensation to the 8/32 environment. Singh, et al. [47] observed that altered vestibular function such 

as increased sway at high altitudes may reverse with acclimatization. Therefore, sensorimotor 

interactions with the 8/32 environment are likely to be more important within the first few days 

following the transitions between G states. 

Sensorimotor Performance Conclusion 

From a sensorimotor perspective, mild hypoxia can induce alterations in performance including visual 

and postural stability decrements and some alterations in piloting ability. These effects are not profound 

in terms of overall impact on performance; however, in combination with other factors unique to 

spaceflight, these performance decrements may reach threshold to impact mission capability. 

To determine whether sensorimotor adaptive mechanisms are negatively affected by the 8/32 

environment, the following studies could be done comparing the normoxic adaptive response with the 

8/32 hypoxic environment: 

 Gaze control and dynamic visual acuity adaptive responses to vision-distorting lenses 

(magnifying, minifying, etc.) 

 Manual control adaptive responses to modified joystick input 

 Gait adaptation to an unstable walking support surface 

 Combined effects of multitasking and increased G (entry profile) on adaptive responses 

If performance decrements are observed that are related to hypoxic derived reductions in ability to 

adapt sensorimotor systems, then countermeasures could be developed to mitigate these changes. One 

potential countermeasure entails hypoxic preconditioning training [48] [49] [50]. This training paradigm 

engages the endogenous mechanisms by which the brain protects itself against cerebral ischemia by 

exposing the subject to a noxious stimulus near to but below the threshold for damage. Following the 

preconditioning training, a tolerance is developed to the same or even different noxious stimulus 

beyond the usual threshold for effect. This type of training has been used successfully to develop an 

increased tolerance for ischemic stress. In this context, preconditioning to mild hypoxia could be used as 

a training countermeasure to reduce the hypoxic performance decrements associated with exposure to 

mild hypoxia and adaptive sensorimotor responses. 



14 
 

Acute Mountain Sickness  

Description  

AMS affects individuals that ascend rapidly to altitude, with symptoms such as headache, nausea, 

vomiting, disturbed sleep, and poor physical performance [15]. The acute change in ppO2 from normoxic 

(~160 mmHg) to the ppO2 of 132 mmHg associated with the 8/32 environment can result in the possibility 

that some crewmembers may develop symptoms of AMS. Between 7% and 25% of adults may experience 

mild AMS near 2,000 m (6,562 ft) [15] [51]. The risk of AMS is modified by several factors including the 

ascent rate to altitude, activity level at altitude, and individual susceptibility [52]. HH appears to induce 

AMS to a greater extent than does either normobaric hypoxia or normoxic hypobaria [53].  

AMS symptoms have been recorded using the Lake Louise symptom questionnaire (LLSQ) and include 

headache plus nausea, dizziness, fatigue, or sleeplessness that develops over a period of 6 to 24 hours. 

While expected to be mild and transient, these symptoms could potentially impact crew health and 

performance on critical mission tasks during lunar surface missions. AMS headaches are reported to be 

throbbing, bi-temporal or occipital, typically worse during the night and on awakening. This has 

implications for sleep quality. When combined with nausea, it can be likened to the flu or a hangover. 

Clinical findings confirm a change in mental status, ataxia, peripheral edema, or changes in performance 

(reduction in normal activities) [15]. 

 

 

 

 

Figure 2. Percentage participants that reached their maximum LLSQ symptoms score 
during the first 7 days at South Pole Station (2,835 m [9,300 ft]) [54]. 
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One of the largest studies on AMS was conducted by Anderson, et al. [54] during rapid ascent to 

Amundsen-Scott South Pole Station (2,835 m [9,300 ft]) in Antarctica. Of 246 subjects, 52% developed 

LLSQ defined AMS (Figure 2). Anderson et al. are currently working on some follow-up manuscripts that 

will describe the known physiological differences between the subjects who reported AMS and the 

subjects who had no AMS symptoms. The most common symptoms were shortness of breath with 

activity (87%), sleeping difficulty (74%), headache (66%), fatigue (65%), and dizziness/lightheadedness 

(46%) (Figure 3). Symptom reports at the South Pole were mild to moderate in severity with symptom 

prevalence peaking on the day after arrival at altitude (day 2, approximately 12 to 18 hours after 

arrival); yet in greater than 20%, shortness of breath with activity, fatigue and sleep problems persisted 

through day 7. This reflected conventional knowledge that symptoms appear between 6 to 48 hours 

after arrival and resolve within the first 3 days [54].  

Located on the high-plateau of Antarctica at an elevation of 2,835 m (9,300 ft), the environment of 

South Pole Station closely reflects the 8/32 environment as well as the operational profile of NASA 

mission scenarios. Most jobs at South Pole Station require physical activity, with a significant portion of 

personnel working outdoors. Activities include construction, heavy equipment operation, transport of 

supplies, science support, research, and fuel delivery [54]. This environment could serve as a high-

fidelity, ground-based analog to research hypoxic effects within a true mission-like environment. 

 

Figure 3. Severity of most commonly reported symptoms over the first week of exposure in 
personnel rapidly transported to the South Pole (2,835 m [9,300 ft]) [54]. 
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AMS Risk Specific to 8/32 Condition 

It appears through an extensive literature search [6] and statistical analysis of available data [10] that 

the 1,830-m (6,000-ft) EAA computed for the proposed 8/32 environment may have more risk of AMS 

than one would expect at this altitude. This independent pressure effect on true hypoxic dose appears 

real, and has been suspected since 1946. Ever since the derivation of the alveolar gas equation was 

published [55] there has been a physiologic foundation to expect different outcomes under normobaric 

and hypobaric hypoxia given the same hypoxic PIO2, termed the nitrogen dilution or the respiratory 

exchange ratio effect [5]. In the current context, there are two cases: the first is the equivalent air 

altitude case with assumed exposure to 1,830-m (6,000-ft) breathing air (21% O2) and the second is the 

exploration atmosphere case with exposure to 4,877 m (16,000 ft) on 32% O2. The difference between 

these two exposures is 3,048 m (10,000 ft) but the PIO2 is identical at 117 mmHg, and it appears that the 

risk of AMS is greater in the exploration atmosphere case due to the lower total pressure [10]. Without 

considering acclimatization to mild hypoxia from one vehicle to the next, there is about a 25% chance of 

AMS per crewmember for the proposed 8/32 environment [10]; this also assumes no further negative 

interactions due to adaptation to microgravity. 

Research is justified to measure the acute mild hypoxic response to the 8/32 environment. It seems that 

the magnitude of the pressure effect on true hypoxic dose is a function of the hypoxic PIO2. The pressure 

difference between 11.8 and 8.0 psia may or may not be sufficient to measure a pressure effect on the 

onset, intensity, and incidence of AMS,  given a reasonable sample of human subjects. If time and 

money resources are not available, then staged decompression and pharmacologic mitigation strategies 

should be developed to reduce and manage the predicted risk of AMS.  

Mitigations 

The most effective mitigation against AMS is prevention by slow ascent to altitude. For exploration 

missions, transitions between atmospheric pressures should be gradual to allow for acclimatization. 

However, there is no clear guidance for a transition rate at the lower equivalent altitudes associated 

with an 8/32 environment. Guidance on conservative ascent rates is usually provided for travel to high 

altitude after reaching an initial elevation of 2,438 to 3,048 m (8,000 to 10,000 ft). Beyond AMS, there 

are also DCS mitigation considerations that may have greater influence on the transition rate from 14.7 

to 8 psia. Finally, if rapid ascent cannot be avoided, pharmacologic prophylaxis may be considered 

although all medications are associated with adverse effects and contraindications.  

Acetazolamide is considered the first-line medication to prevent AMS on the ground, but it cannot be 

taken by individuals with a sulfa allergy and commonly causes paresthesias, urinary frequency [56], and 

decreased intraocular pressure, which may worsen ocular hypotony, a possible etiology of VIIP [20]. 

Dexamethasone is also recommend by the Wilderness Medical Society for AMS prophylaxis, but its use 

beyond 10 days is associated with glucocorticoid toxicity (for example, hyperglycemia and delirium) and 

adrenal suppression [57] [58], and, according to one case report, can lead to altered mental status, 

gastrointestinal bleeding, skin rash, and avascular necrosis [59]. Given these potential serious adverse 

effects, dexamethasone is generally considered second line for AMS prophylaxis and reserved for 

treatment [60]. Ibuprofen is being investigated as a prophylactic agent, but it may increase the risk of 

gastrointestinal bleeding or renal insufficiency [58]. Regardless of the agent, the potential benefits must 
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be weighed against the clinical and operational risks. Similarly, treatment options – typically descent to a 

lower equivalent altitude, O2, acetazolamide, anti-inflammatories, and steroids – will have to be 

evaluated in an 8/32 environment. 

Decompression Sickness 
DCS occurs when nitrogen (N2) (or an inert gas) comes out of solution when ambient pressure is reduced 

according to Henry’s law and bubbles cause local pressure or ischemia. Type I DCS is milder, generally 

characterized by joint pain, but can progress to the more serious type II DCS, which involve the 

cardiopulmonary and/or central nervous system. The treatment of DCS is repressurization to cabin 

pressure and supplemental O2 for mild cases and hyperbaric O2 for more serious cases. The risk of DCS is 

lowered by effective prebreathe to purge the body of N2 before EVA. New prebreathe protocols and 

treatment algorithms will need to be developed and validated for an 8/32 environment.  

DCS was a primary trade consideration during the EAWG effort [1]. We expect that the 8/32 

environment alone puts the EVA crewmember in a position where DCS risk is mitigated to acceptable 

levels with even a small amount of O2 prebreathe. This may even be the case when EVA suits are 

operated at less than 100% O2. In one analysis, the NASA Tissue Bubble Dynamics Model (TBDM) [61] 

was used to calculate the prebreathe duration required from a 10.2 psia / 26.5% O2 cabin to maintain 

the current acceptable DCS risk of 15% assuming a 4.3 psia / 95% O2 EVA suit. From the 10.2/26.5 cabin, 

a 130 minute prebreathe was required to achieve acceptable risk. In comparison, the expected 15-

minute operational prebreathe protocol from the 8/32 cabin assuming a 4.3 psia / 80% O2 EVA suit, 

resulted in a predicted DCS risk of 13%. This results in significant improvement in the work efficiency 

index defined as the total EVA time divided by the overall preparation time for EVA.  

Because DCS is expected to be mitigated to acceptable levels through the 8/32 environment in 

conjunction with a short-operational prebreathe protocol, the use of a variable pressure suit with the 

suitport on a vehicle like the MMSEV offers additional DCS mitigation capability. These include moving 

some traditional EVA work to the intravehicular activity (IVA) role, short EVA, single-person EVA, and 

immediate repress to 8 psia for DCS treatment and intermittent recompression [62] [63] [64] [65] [66]. 

Although all of these factors look to be reliable strategies for DCS mitigation, they need to be validated 

in human research studies. Because DCS mitigation is the primary driving factor for the 8/32 

environment, it is recommended that the first research efforts conducted by NASA validate that 

acceptable DCS risk will be achieved using this proposed environment. 

Exercise and Cardiovascular Performance 

Exercise Performance during Spaceflight 

Maintenance of exercise performance is of crucial importance for mobility of astronauts during long-

duration missions and upon return to 1-g. Despite crew allocation of about 2.5 hours per day to 

exercise, current exercise countermeasures are not fully effective in protecting against spaceflight-

induced decrements in muscle, cardiovascular function, and bone health. For example, ISS 

crewmembers (Expeditions 1 through 15, n = 18) demonstrated mean decreases in isokinetic knee 

extensor and flexor strength of 11% and 17%, respectively [67], 10% reductions in maximal aerobic 
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capacity [68], and 2% to 7% decreases (depending on site) in bone [69]. Recent analysis, including data 

from crewmembers with access to the advanced resistive exercise device (ARED), demonstrates that 

resistive exercise using ARED combined with adequate dietary intake has been even more effective in 

preserving bone mineral content and lean body mass [70]. It is now generally perceived that the current 

exercise countermeasures suite is effective at preserving muscle strength and aerobic performance if 

protocols are adhered to and adequate nutritional intake is maintained. There is a need to prevent 

spaceflight-related deconditioning to protect the health and mission readiness of current ISS crew as well 

as to enable NASA to protect fitness of longer-duration astronauts for moon, Mars, and NEO missions. 

Exercise Performance and Hypoxia 

Exposure to hypoxia is associated with a number of adaptive responses, which could act synergistically 

with microgravity to further impair muscle and exercise performance. Acutely, acclimatization to a 

moderate altitude, say 3,048 m (10,000 ft), takes approximately 3 weeks, during which time there is 

impairment in exercise performance due to decreased cardiac output, increased ventilation, and muscle 

fatigue [71] [72]. A decrease in the ability to perform exercise countermeasures early in flight may have 

negative consequences, as a large portion of the strength loss and muscle atrophy observed in ISS 

crewmembers may occur during the first few weeks in microgravity. Chronic exposure (> 3 weeks) to the 

8/32 environment may also magnify microgravity-induced changes in muscle and exercise performance. 

For example, exposure to moderate altitude accelerates muscle atrophy [73] and the transition from 

slow-to-fast twitch fiber type [74], decreases mitochondrial function and aerobic metabolism [75], and 

increases muscle fatigability [76]. Ultimately, there is a 0.5% reduction in aerobic power output per 100 

m (328 ft) of elevation [76] [77] [78] [79]. Moreover, similar to microgravity, individuals with higher 

aerobic capacity are more affected by hypoxic exposure [80], and there are gender differences in 

performance [81] [82] [83] as well. 

Cardiovascular System Performance and Spaceflight 

Alterations in cardiovascular function have been reported following both acute and chronic exposure to 

spaceflight and are thought to be secondary to circulatory unloading mediated by a central 

redistribution of fluid and an accompanied reduction in plasma volume. It is now accepted that these 

adjustments contribute to the increased risk of orthostatic intolerance and underlie the reduction in 

exercise capacity experienced by some astronauts. More recent studies using both ultrasound and 

cardiac magnetic resonance imaging have elucidated a number of structural and functional changes 

including left ventricular diastolic dysfunction, cardiac atrophy / remodeling (an average decrease of 

about 1 gram per week), and vascular / endothelial dysfunction, which is differentially altered between 

cerebral and peripheral vascular beds. 

Cardiovascular System Performance and Hypoxia 

The cardiovascular control systems are keenly sensitive to changes in both O2 and CO2. While there is no 

literature on the specific environment in question (8/32) combined with a stressor such as spaceflight, 

there is a relatively rich literature on the effects of hypoxia (including relatively mild hypoxia) here on 

Earth. A preliminary review of this literature revealed that chronic exposure to extreme HH such as that 

experienced at altitudes at or above 3,400 m (11,154 ft) may impart protective adaptive effects on the 

cardiovascular system. On the other hand, acute or intermittent exposure to such conditions, even at 
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altitudes that provide only modest hypoxia, may impart maladaptive responses. Specifically, Holloway, 

et al. demonstrated reduced left ventricular mass (about 11%) and impaired diastolic function in sea 

level dwelling subjects after only a short and gradual accent to the 5,300-m (17,388-ft) Mt. Everest Base 

Camp [84]. It was postulated that such changes were due to alterations in myocardial energetics, in 

particular reduced levels of phosphocreatine and adenosine triphosphate. Such results confirm and 

provide a mechanistic insight to an earlier finding by Kjaergaard and colleagues, who demonstrated that 

cardiovascular function was depressed even after only 18 hours of exposure to simulated hypoxia 

comparable to living at 4,000 m (13,123 ft) [85]. Papers by Nishimura [86] and Iwasaki [87] suggest that 

a relative altitude as low as 2,000 m (6,562 ft) is sufficient to alter vascular function in the brain in as 

little as 5 hours. 

It is likely that many of these effects are mediated, at least in part, by hypoxia-inducible factor 1 (HIF-1) 

[88] [89]. There is also evidence that HIF-1 interacts with reactive O2 species to form a positive feedback 

loop, thus exacerbating any oxidative stress already present during spaceflight. 

Exercise and Cardiovascular Performance Conclusion 

Acute and chronic exposure to the 8/32 environment may exacerbate microgravity-induced decrements 

in muscle and exercise performance. The relative impact of these changes is highly duration dependent. 

Acute studies are needed to compare muscle and cardiovascular performance at 8/32, probably using 

NH simulations to determine pre- and in-flight exercise prescriptions. Long-duration 8/32 exposure 

would prompt need for additional adaptation studies. 

Immune System 
We know that reactivation of latent herpes viruses occurs during short-duration spaceflights [90]. 

Recent data from the ISS indicate that in-flight dysregulation persists for the duration of a 6-month 

mission [91]. Thus, these data strongly suggest that spaceflight is associated with immune dysregulation. 

Therefore, persistent immune dysregulation leading to increased susceptibility to infections and 

reactivation of viruses as well as autoimmune manifestations might be a limiting factor for long-duration 

missions into deep space and constitute an unacceptable clinical risk for the crewmember’s health [92]. 

We also know that T cell function is impaired during hypoxic stress [93] [94], and that hypoxia promotes 

the accumulation of extracellular adenosine as a result of enhanced purine nucleotide degradation from 

adenosine tri- and diphosphate (ATP, ADP). Binding of adenosine to the cAMP-elevating Gs protein-

coupled A2 receptors results in an inhibition of effector functions of T cells and myeloid cells and 

includes the inhibition of expansion and secretion of cytotoxic molecules and cytokines [95]. This 

suppresses the immune system and thus renders the body more susceptible to infections, auto-immune 

manifestations and viral reactivations.  

The combined immune-suppressive effects of spaceflight environmental factors and even a short-term 

and rather mild hypoxic atmosphere is therefore of much concern. The spaceflight effects per se might 

be controllable even during long-term missions, but the additive and or synergistic effects of an 8/32 

hypoxic environment might render the risk of immune deficiencies less controllable. Thus, forward work 

investigating to what degree an additive and/or synergistic effect of the well-known spaceflight 
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environmental factors and 8/32 hypoxia occurs is highly recommended before planning for long-

duration deep space missions. 

Envisaged forward research for resolving this could constitute estimations of markers for immune function 

in 1) animal studies combining unloading with hypoxia for various durations, 2) tissue culture studies 

combining bioreactor rotations with hypoxia, 3) humans during bed rest studies combined with hypoxia, 

and 4) astronauts on the ISS combined with different levels of short and longer periods of hypoxia. 

Oxidative Stress and Damage 
There is evidence that spaceflight-induced oxidative stress and damage (OSaD) is a component of 

immune manifestations, decrease in bone and muscle strength, and development of the VIIP syndrome 

during spaceflight [96] [97] [98] [99] [100] [101] [102] [103] [104]. OSaD is the result of organic and 

systemic dysregulation of the free radical normalization and scavenging process, and is also the cause of 

many different manifestations of disease including atherosclerosis [105] [106] [107]. Therefore, during 

long-duration missions into deep space, OSaD could likely constitute a mechanism for development of 

cardiac disease [105] [108] [106] [109]. 

Changing the environment during spaceflight to an 8/32 environment will lead to hypoxia, which is 

known to further promote OSaD [110] [111]. The combination of spaceflight (radiation and 

weightlessness) and hypoxia will be a hazard that most probably will induce augmented synergistic and 

additive OSaD effects, thereby rendering immune dysfunction, bone demineralization, muscle 

degradation, and the VIIP syndrome less controllable – even with the use of the current 

countermeasures. Therefore, OSaD research is warranted before we know whether it is safe for the 

astronauts to change the vehicle environment to a lower O2 partial pressure during spaceflight [112] 

[113] [103]. Such research should be combined with the suggested research scenarios within the 

immune discipline. 

Nutrition and Bone 

Nutrition during Spaceflight 

In general, nutritional risks increase with duration of exposure to a closed food system and with 

countermeasure application designed for specific systems [114]. Inadequate nutrition can compromise 

crew health, leading to loss of bone and muscle mass and strength, altered immune system function, 

impaired cardiovascular performance, gastrointestinal function, endocrine function, oxidative defenses, 

ophthalmologic health, and psychological health and performance [114].  

Nutrition and Hypoxia 

One common effect observed with hypoxia exposure is anorexia. Acute effects of hypoxia at high 

altitude are anorexia, nausea, and vomiting [115]. Chronic effects are progressive weight loss [116]. Also 

supportive of this are the findings that low O2 availability in disease populations at sea level (i.e., 

respiratory diseases, chronic obstructive pulmonary disease) are associated with reduced energy intake 

and weight loss, and O2 supplementation can lead to weight gain in these populations [117]. 



21 
 

Several factors have been proposed to explain anorectic effects under hypoxic conditions. Homeostatic 

pathways dominate when energy stores are low and provide increased motivation to eat. Hedonic, or 

reward mechanisms, can override homeostatic mechanisms by increasing cravings and desires to eat 

highly palatable foods [118]. There is evidence that both of these mechanisms may be affected upon 

exposure to hypoxia [119] [120]. The hormones leptin and ghrelin play a role in the homeostatic 

pathway by regulating appetite. Leptin suppresses appetite and ghrelin stimulates the appetite. Plasma 

concentration of leptin and ghrelin were elevated and reduced, respectively, in high altitude 

acclimatized individuals (acclimatized at 3,675 m [12,057 ft] for 6 months), and the leptin correlated 

with food intake [120].  

There is also evidence that hypoxia can induce bone resorption processes [121] [122] [123] [124]. When 

bone resorption is increased, there is a potential increased risk for renal stones if bone formation is not 

concurrently increased. This is a significant concern, given concerns about renal stone risk and bone loss 

during spaceflight.  

Nutrition and Bone Conclusion  

If intermittent periods of hyperoxia and hypoxia are proposed for Exploration-class missions, then studies 

need to be conducted to determine how long anorexic effects would be expected. With intermittent 

exposures, a “plateau effect” regarding energy intake may not happen; consequently, crewmembers could 

lose more weight than expected. Maintaining body weight will be crucial for maintaining overall health in 

an Exploration-class mission. Bone mineral density and lean body mass can be maintained with proper 

resistive loads and adequate nutrition [125]. Studies also need to be conducted in these proposed 

environments to investigate renal stone risk and altered calcium metabolism.  

Behavioral Health and Human Performance Risks 
The following section examines the literature relating to the risk for behavioral health and performance 

decrements in a mildly hypoxic environment. These risks include behavioral, sleep, and team interaction 

effects. No studies were found that provided concrete evidence on the effects of a hypoxic environment on 

team dynamics at the 1,830 to 3,048 m (6,000 to 10,000 ft) range. Commonly reported psychological and 

behavioral changes resulting from the effects of hypoxia include susceptibility to AMS (discussed separately), 

loss of appetite (discussed in Nutrition and Bone section), an increase in anxiety, fatigue, psychomotor effects 

(with an increase in reaction time), and some implications for acclimatization and performance.  

Team 

Although no studies were found on team dynamics, there is evidence of high-performing teams in this 

altitude range. One clear example is mountain rescue teams, which  regularly perform high-stress, 

physically demanding and life-saving missions in this altitude range. As noted in conversations with the 

Rocky Mountain Rescue Group (Boulder, CO) operations director, rescue team members are also well 

acclimatized to this altitude, physically prepared, and experienced working in high physical and mental 

stress situations. These traits are most evident in mountain rescue teams with high, sustained mission 

counts . In addition to mountain rescue teams, Colorado-based professional sports teams show the 

capability of success in highly physically stressful environments. This includes two Super Bowl victories 
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for the Denver Broncos (1998 & 1999), two Stanley Cup championships for the Colorado Avalanche 

(1996 & 2001), and a  National League pennant for the Colorado Rockies (2007). 

Anxiety 

Few studies examined the incidence of anxiety symptoms in the 1,830 to 3,048 m (6,000 to 10,000 ft) 

range; most studies were conducted at higher altitudes. At a simulated altitude of 3,500 m (11,483 ft), 

Bushov, et al. evaluated personality factors in mountaineers and nonmountaineers. It was observed that 

neuroticism levels were lower in mountaineers, moderated by the physical adaptation to altitude [126]. 

These reduced levels of neuroticism correlated with reduced levels in the symptoms of AMS and may 

have implications for astronaut selection. Additionally, Bushov, et al. concluded that the influence of 

anxiety under hypoxia is only exerted on stimulus-response tasks but not on more complex cognitive or 

psychomotor tasks [126]. Virues-Ortega, et al. [127] proposes a more complex interaction with the 

effect of personality traits associated with anxiety (emotional stability, anxiety trait, neuroticism) and 

differences in the hypoxic ventilatory response as individual differences that affect the effects of altitude 

exposure. Emotional stability is associated with better adaptation to altitude in regard to fatigue and 

AMS symptoms. However, only limited research is available, and it would be worth looking at this in an 

operational spaceflight context. 

Fatigue 

Martin, et al. [128] describe fatigue as any level of exercise at altitude that represents a greater “work 

intensity” when compared with that at sea level. High and extreme altitude studies have found negative 

correlations between fatigue and emotional stability [129]. No studies were found for the 1,830 to 

3,048-m (6,000 to 10,000-ft) altitudes. Higher levels of fatigue are likely to exacerbate hypoxia 

symptoms and could potentially lead to long-term effects, though this remains a question for future 

investigations [127]. 

Psychomotor 

Most psychomotor studies have been conducted at very high altitudes (6,000 to 8,000 m) (19,685 to 

26,247 ft), and there is a lack of consensus on the initial cause of psychomotor effects. It has been 

argued that psychomotor effects could be due to related factors of hypoxia (such as anxiety and fatigue) 

instead of a direct result of the hypoxic environment. The minimum height that produces motor 

impairments varies among investigations between 2,500 and 6,000 m (8,202 and 19,685 ft). In addition, 

consensus for tasks and protocols to detect motor impairments is necessary (e.g., Purdue Pegboard 

versus the Finger Tapping Task) [127].  

The effect that is most accepted in altitude literature is the increase in complex reaction time (CRT). CRT 

has been found to be a sensitive index of acute altitude exposure both in laboratory conditions [130] 

[131] and real expeditions [132] both with and without AMS [133], although most effects do not appear 

before 6,000 m (19,685 ft). After prolonged exposure, significant increase in CRT can be found above 

2,500 m (8,202 ft) [134] [135]. Denison, et al. found an increase in CRT in altitude as low as 1,500 m 

(4,921 ft) [136]. Fowler, et al. demonstrated a significant increase in CRT in subjects at altitude of 2,438 

m (8,000 ft) [131]. Abraini, et al. [137] and Bouquet, et al. [138] show that basic motor processes at high 

altitudes remain unaffected.  
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Perception 

Few studies have been conducted on perception in the 1,830 to 3,048-m (6,000 to 10,000-ft) range; most 

have mostly been conducted at high and extremely high altitudes. Altitude simulations at 1200, 2400, and 

3700 m (3937, 7874, and 12139 ft) by Watson, et al. [139] observed that event-related potentials (the 

resulting brain response from a sensory, cognitive, or motor event) and increase of reaction time were not 

associated with a rise in the absolute threshold for auditory stimuli up to 16 kHz. Fowler and Grant 

obtained similar results [140]. Burkett and Perrin noticed no effects on the discrimination of speech 

sounds at 6,600 m (21,653 ft) [141]. Finally, in an analogous investigation, Martin, et al. [128] found no 

effects on the localization of stimuli at an altitude of 3,700 m (12,139 ft). Alterations in perception of 

brightness and  color have been reported at higher altitudes (3,962 m, 4,300 m) (13,000 ft, 14,107 ft) 

remaining throughout a stay at altitude [142] [143]. Ground-based analog studies could confirm that no 

effects are expected in auditory perception, discriminations of speech sounds or localization of stimuli and 

could examine the threshold for changes in brightness and color perception.  

Cognition, Memory and Attention 

Sensitivity of brain structures to hypoxia indicates that exposure to altitude has the potential to cause 

dysfunctions to learning and memory. Numerous high altitude and extreme altitude studies have 

validated this hypothesis. Research supports that memory difficulties depend on a reduced capacity to 

learn new information rather than its retrieval [144] [145] [146]. At lower altitudes, conflicting evidence 

is found. Subjects exposed to a simulated altitude of 2,438 m (8,000 ft) performed a card-sorting task 

faster [147]. At the altitudes in question (1,830 to 3,048 m [6,000 to 10,000 ft]), alterations in long-term 

memory, specifically episodic memory, have rarely been observed, and always as an acute effect, never 

as long-term effect [127].  

Both animal and human observations conclude the lower threshold of altitude needed to produce 

spatial memory dysfunction is above 3,500 m (11,483 ft) [148] [149].  

Altitude effects on attention capacity are rarely described in altitude literature. Some impairment was 

found in subjects at 4,200 m (13,780 ft) using the Digit Symbol test from the Wechsler Adult Intelligence 

Scale [150]. Reductions in cognitive flexibility and resistance to interference have been recorded several 

times above 2,500 m (8,202 ft) [127]. As previously noted, however, these decrements could be related 

to anxiety or fatigue. 

Neural Structural Changes 

Neuropsychological impairment are said to be the result of respiratory, circulatory, and brain detriments 

in adaptation to hypoxic environments. Some brain structures are more dependent on O2 supply than 

others, including the hippocampus, and the parahippocampal region (surrounding temporal lobe 

region). These structures are involved in conscious recollection and memory, and the temporal lobe is 

involved in familiarity-based discrimination. These structures would be most affected during 

acclimatization to the 8/32 environment during spaceflight.  

Schulze, et al. observed that exposing his subjects to an O2 saturation (SaO2) between 88% and 90% 

(2,500 m [8,202 ft]) produced a metabolic delay in the hippocampus, hypothalamus, cortex, and 
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striatum [151]. These effects have implications for multiple brain functions. The hippocampus is 

important for spatial memory, short- and long-term memory, the hypothalamus controls the endocrine 

system that regulates body temperature, fatigue, hunger, thirst, sleep, and circadian cycles, the striatum 

is linked to planning and modulation of movement pathways and executive function, and the cortex is 

related to memory, attention, perceptual awareness, thought, language, and consciousness [152]. 

Gozal, et al. used immunohistochemistry to record an increase in programmed cell death (apoptosis) in 

area CA1 of the hippocampus after 2 days of exposure to intermittent hypoxia (10 psi / 21% O2, EAA = 

3,132 m [10,275 ft]) [153]. After 2 weeks, the alteration reverted. It is important to examine the 

postflight effects to determine the time necessary to return to baseline. 

Behavioral Health and Human Performance Conclusion 

The findings showed that the effects of the 8/32 environment will have short-term behavioral and 

performance impacts. Adaptation can occur within 3 days in most cases [54], and the impacts are not 

expected to be severe enough to compromise a mission, although further study may be needed. Mitigation 

strategies can be developed to minimize the increased risk of performance and health decrements. 

The degree of decrements in the microgravity environment is unknown, as they are subject to many 

factors (individual / genetic variations, environmental effects, workload, duration of exposure, etc.). 

Further studies would be beneficial to establish a baseline for these under high-fidelity mission 

operational constraints, and to develop and validate mitigation strategies.  

Sleep  
The introduction of an 8/32 environment may have implications for sleep in microgravity. In particular, 

difficulties in sleep are anticipated in hypoxic environments during the acclimatization phase.  

Sleep during Spaceflight 

Sleep deprivation is associated with degraded performance of neurobehavioral tasks, as well as 

decrements in health and well-being; hence, any stressor that has the potential to affect the quality of 

sleep during a mission could be detrimental to the astronaut. Studies have shown that sleep is reduced 

with an average nightly duration of 6 hours in short-duration missions (i.e., Space Shuttle), despite 

schedule requirements that accommodate 8 hours of sleep per night [19] [154]. Duration may not be the 

only aspect of sleep that is affected currently in spaceflight. Shuttle astronauts reported poor sleep quality 

on orbit [17]. Few studies have objectively looked at sleep structure in space, but those that have 

evaluated sleep stages have found changes, although these studies have included only a small number of 

participants [154] [155]. Ground research demonstrates that changes in sleep structure are associated 

with health and performance decrements [154] [155] [156] [157]. Reduced sleep and possibly altered 

sleep structure already poses implications for cognition, alertness, and performance on critical tasks.  

Sleep and Hypoxia 

Terrestrial studies indicate that hypoxic environments can yield similar detriments to sleep as what has 

been seen in the spaceflight environment, particularly field studies that include high workload and 

increased exertion. Hence, the combination of adding a hypoxic environment to existing stressors of 

sleep in space could potentially exacerbate negative effects. 

http://en.wikipedia.org/wiki/Executive_function
http://en.wikipedia.org/wiki/Memory
http://en.wikipedia.org/wiki/Attention
http://en.wikipedia.org/wiki/Awareness
http://en.wikipedia.org/wiki/Thought
http://en.wikipedia.org/wiki/Language
http://en.wikipedia.org/wiki/Consciousness


25 
 

The lowest altitude at which sleep and/or post-sleep performance are affected is not definitively known. 

Decreased quality of sleep has been reported after acute ascent to altitudes of North American ski 

resorts (2,000 to 3,000 m) (6,561 to 9,843 ft) and higher. Changes in sleep architecture include a shift 

toward lighter sleep stages, with marked decrements in slow-wave sleep and with variable decreases in 

rapid-eye movement sleep [158]. Accordingly, sleep at these altitudes was perceived as poor quality 

with the sensation of occasional awakenings, a sense of suffocation caused by periodic breathing 

relieved by a few deep breaths, and resumption of sleep.  

Weil proposes respiratory periodicity (arousals) at altitude results from alternating respiratory 

stimulation by hypoxia and subsequent inhibition by hyperventilation-induced hypocapnia [158]. 

Despite relatively the same sleep duration, upon arising from sleep, subjects reported impressions of 

greatly abbreviated and restless sleep. Also, during wakefulness, subjects experience drowsiness [158]. 

This relationship may need further evaluation because CO2 levels are several times greater on the ISS 

than on Earth [13]. 

Studies in simulated environments, however, found less conclusive effects on sleep and related outcomes. 

Muhm, et al. studied post-sleep neurobehavioral performance decrements at simulated 2,438 m (8,000 ft) 

on O2 saturation, heart rate, sleep quantity, sleep quality, post-sleep neurobehavioral performance, and 

mood [159]. Results showed SaO2 before sleep was significantly lower at altitude than at sea level. During 

sleep, SpO2 decreased further at both altitude and ground. SaO2 was below 90%, 44.4% of the time at 

altitude and 0.1% of the time at sea level. Subjects participated in three 18-hour sessions and sleep was 

more disturbed in the first study session than in subsequent sessions (potentially an argument for pre-

adaptation before flight), and older subjects had more disturbed sleep. Despite these findings, objective 

and subjective measurements of sleep quantity and quality did not differ significantly with altitude, nor 

post sleep, neurobehavioral performance, or mood.  

Thomas, et al. found that sleep at simulated 3,962 m (13,000 ft) was not associated with decrements in 

working memory or simple reaction time in healthy non-smoking men and women [160]. Weiss, et al. 

found no difference after hypoxia in sleepiness, encoding, verbal learning, objective vigilance, attention, 

or working memory at the same altitude with intermittent 9-hour exposures for 28 consecutive nights 

[161]. While these results were unexpected, they highlight the limitations of simulated studies, possibly 

because they lack the conditions of high workload and exertion found in field studies and the spaceflight 

environment.  

Space Radiation  
The Space Radiation Program is focused on research to accurately define, quantify, and mitigate the 

health risks associated with exposure to high-charge, high-energy galactic cosmic rays and solar protons 

that are not found on Earth. Of concern are the risks of radiation carcinogenesis, acute or late central 

nervous system effects, degenerative tissue effects (including circulatory diseases, stroke, and cataract) 

and the acute radiation syndrome due to solar particle events. At the cell and molecular level, radiation 

causes genetic damage by two methods, through direct energy transfer to DNA molecules leading to 

base damage or strand breakage, and indirectly through free radical mediated pathways that cause 

chemical damage to the DNA molecule. Low-linear energy transfer (LET) radiation, such as gamma or x-
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rays found on Earth, mediate much of their damaging impact through indirect mechanisms, whereas 

high-LET radiation (galactic cosmic rays) found in the space radiation environment form densely ionizing 

tracks as they traverse a cell and lead to direct DNA damage [162].  

The impact of O2 in modulating the effectiveness of radiation for inducing cellular damage is well 

documented and is dependent on the type or quality of radiation, radiation dose, and dose-rate. The 

level of cellular O2 present during radiation exposure can amplify the generation of radicals and alter the 

resolution of chemical damage to cellular biomolecules, including DNA. This is known as O2 

enhancement and is expressed as the O2 enhancement ratio (radiation dose required to cause effect 

without O2/dose required to cause effect with O2, which stems from the ability of O2 to promote the 

biological damage of low-LET radiation caused by free radicals. Tissues are less sensitive to the effects of 

radiation when in a hypoxic or anoxic state, and in the context of a tumor, this effect is directly 

associated with radiotherapy failure [163]. O2 enhancement is diminished at low dose and lower dose-

rates of radiation exposure, such as those that may be encountered during space travel, and is greatly 

diminished or lacking for high-LET radiation where the direct effects of radiation on DNA double-strand 

breaks dominate [164] [165]. Based on these studies, it is not anticipated that there will be any 

significant impact on the radiation risk portfolio due to the slight hypoxia that may be associated with 

the 8/32 environment proposed for exploration vehicles and, therefore, this would not be considered 

high priority at this time. In addition, no obvious factors that would alter the Space Radiation risk profile 

were identified in a review of relevant epidemiology data assessing the long-term impact of living at 

high altitude, which is the closest Earth-based analog for this type of environment.  

The proposed 8/32 exploration environment is best approximated by high altitude environments on 

Earth with an equivalent air altitude in the range of 1,981 to 2,896 m (6,500 to 9,500 ft). A large amount 

of literature exists regarding the acute effects of high altitude on human physiology. Multiple 

epidemiology studies analyze the chronic health implications of living at high altitude, and many analyze 

effects on the cardiovascular system and cancer – risks of concern for space radiation [166] [167]. 

Because of multiple confounding factors, these studies are generally controversial and should be 

interpreted with caution. We reviewed several of these studies that showed a protective effect of living 

at high altitude on mortality from cardiovascular disease. The first study, from German Swiss citizens 

[168], shows a decreasing mortality due to stroke and coronary heart disease with increasing altitudes 

from 259 to 1,960 m (850 to 6,430 ft). A similar effect was seen in a second, recent study [169] where 

the relationship between altitude, life expectancy, and mortality for leading causes of death in the 

continental United States were analyzed. Here, altitude was inversely correlated with mortality from 

ischemic heart disease, but detrimental for chronic obstructive pulmonary disease, with no significant 

association with life expectancy, cancer, or stroke. The authors of the second study conclude that this 

protective effect is not related to changes in the classic risk factor for these diseases but may be 

attributable to an overall enhancement in cardiac efficiency and changes at the molecular level that may 

offer protective effects, such as the hypoxia-associated changes in hemoglobin and iron metabolism. 

Finally, we found one study conducted in the United States where the risk of cancer was inversely 

correlated with geographical elevation [167]. This study also found a significant decrease in mortality 

due to heart disease at higher elevations, although they did not control for known risk factors related to 



27 
 

diet and smoking. Of note is the fact that background levels of radiation are higher at increasing altitude 

due to diminishing shielding effects of the atmosphere; therefore, the interplay of complex factors must 

be considered in deciphering these results. Overall, we assume that changes in physiologic O2 levels in 

the proposed exploration environment will be minimal and are not likely to significantly alter biological 

damage caused by low dose-rate space radiation and, therefore, are not likely to change the risk profile 

of the Space Radiation Program.  

Exploration Medical Capability 
HRP has assigned the Exploration Medical Capability (ExMC) Element the responsibility of addressing the 

overarching risk of unacceptable health and mission outcomes due to limitations of in-flight medical 

capabilities. A long-term change in atmosphere impacts ExMC’s stance toward exploration risks and 

primarily affects Gaps 1.01: inadequate information on preflight medical screening capabilities for 

exploration class missions, 2.01: limited knowledge about incidence rates, probabilities, and 

consequences relative to loss of crew and/or loss of mission for the medical conditions on the Space 

Medicine Exploration Condition List (SMEMCL; JSC-65722), 4.04: lack of hardware for variable O2 

delivery that minimizes localized O2 build-up. 

The SMEMCL was created to define the set of medical conditions that are most likely to occur during any 

exploration DRM as the first step in addressing the aforementioned risk. The list was derived from the 

ISS Integrated Medical Group Medical Checklist (JSC-48522), the Flight Data File Medical Checklist (JSC-

48031), in-flight medical incidence data in the Lifetime Surveillance of Astronaut Health (LSAH) 

repository, and NASA flight surgeon subject matter expertise. The list of conditions was prioritized for 

specific DRMs with the assistance of the ExMC Advisory Group, which is composed of flight surgeons 

and representatives from Space Medicine management, the astronaut office, the National Space 

Biomedical Research Institute (NSBRI), and inputted incidence data from the Integrated Medical Model 

(IMM) that is further described.  

The purpose of the SMEMCL is to serve as an evidence-based foundation in determining which medical 

conditions could affect a crewmember during a given mission profile, which of those conditions would 

be of concern and require treatment, and for which conditions a gap in knowledge or technology 

development exists. This information will be used to focus research efforts and technology 

development. Atmospheric changes from sea level to 8 psi and 32% O2 will change the incidence of 

diseases currently being researched such as AMS, add new diseases to consider such as chronic 

mountain sickness, and alter the diagnosis and treatment of diseases not directly induced by hypoxia 

such as a pneumothorax that needs increased O2 for treatment. Gap 1.01 will be affected by the 

changing disease risk and requires a reevaluation of screening capabilities for AMS to ensure that 

crewmembers can tolerate long-duration missions. 

The IMM addresses Gap 2.01 and is a stochastic model that uses Monte Carlo methodology to simulate 

medical events and estimate the impact of these medical events for a given DRM. Outcomes include 

Crew Health Index (CHI), probability of evacuation (EVAC), and probability of loss of crew life (LOCL). 

20,000 trials are simulated for each DRM and probability distributions for CHI, EVAC, and LOCL are 
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determined. Thus, a change in cabin pressure will directly affect diseases such as AMS and DCS, but also 

affect the consequence of O2-dependent diseases such as respiratory infection and anemia. 

Treatment of these O2 -dependent diseases requires directed delivery of concentrated O2, which is being 

researched and developed by ExMC to close Gap 4.04. This capability may be impaired by a lower 

ambient cabin pressure and higher O2 concentration, requiring a reevaluation of current efforts. 

Though none of these concerns would preclude a change to an 8/32 environment, further research 

would help characterize the effect of this change on ExMC’s Gaps and concerns. An experimental study, 

placing cohorts in an 8/32 environment, with sufficient power to be statistically significant, would 

provide valuable data about susceptibility to this environment, incidence of disease, and effectiveness of 

treatment modalities. Results from such a study would provide valuable input into IMM and allow for 

treatment testing and O2 delivery. 

Overall Synergistic Effects of 8/32 and Spaceflight Environment 
The combination of hypoxia, hypobaria, and hypogravity can potentially worsen the physiologic changes 

due to these environments that have been described separately in the literature. To our knowledge, no 

data exist on the combination of all three environments, or hypobaria combined with hypogravity. 

Physiologic changes to HH and hypoxia combined simulated microgravity (head-down bed rest) 

described in the literature are summarized in Table 4.  
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Table 4. Physiologic Changes in Response to Hypoxia Combined With Hypobaria and Hypoxia 
Combined with Hypogravity 

 Hypoxia + Hypobaria Hypoxia + Hypogravity 

CNS/Ocular Acute mountain sickness 
(headache, nausea, weakness, 
fatigue, dizziness, difficulty 
sleeping) [192] 

Acute mountain sickness 
symptoms when exposed to 
hypoxia and head-down bed rest 
[170] 
Minor reduction in cerebral blood 
flow and resistance with 
combination [194] 

Cardiovascular Systemic vasoconstriction [196] 

[193] 
Increased blood pressure [193] 

[195] 
Increased heart rate [193] [195] 

[197] 
Decreased stroke volume [193] 

Decreased cardiac output [193] 
Decreased maximal O2 
consumption (VO2max) exercise 
performance [193] 

Reduced VO2max but may be due 
to inactivity of bed rest [170] 
Possible small improvement in 
orthostatic tolerance [170] 

Respiratory Pulmonary vasoconstriction [195] 

[197] 
Increased respiratory drive  [193] 
Increased pulmonary blood 
pressure [193] 

No significant change in pulmonary 
mechanics and gas exchange 
compared to hypoxia alone [170] 

Hematological/Immunological Reduced plasma volume [193] 

[197] 
Increased hematocrit [193] 
Increased erythropoiesis [193] 

[197] [190] 
Polycythemia [196] 
Increased blood viscosity  [193] 
Increased thrombotic risk [190] 

No significant change in 
hemoglobin, hematocrit, plasma 
fibrinogen, and plasma albumin 
compared to hypoxia alone [170] 

Cognitive Variable impairment on 
performance [193] 

No significant difference in 
arithmetic, short-term memory, 
and maze tracing [170] 

Nutritional Reduced appetite, energy intake, 
and body mass irrespective of 
acute mountain sickness [191] 

No articles found 
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Whereas some of these changes act in opposite ways, other changes may be synergistic. For example, 

Loeppky, et al. [170] found that subjects exposed to hypoxia (1,645 m [5,400 ft]) and -5° head-down bed 

rest had AMS symptoms, whereas subjects exposed to hypoxia only remained asymptomatic, suggesting 

an additive effect between hypoxia and reduced gravity. However, the same study found a small 

improvement in orthostatic tolerance attributed to increased plasma norepinephrine.  

Clearly, much more research is needed. Without research and experience operating in a combined 

environment, predictions of physiologic changes from the combination of the 8/32 environment with 

the spaceflight environment will be very limited since no known data exist. 

Furthermore, if exploration crews are to be exposed to similar CO2 levels as the ISS, the effect of 

hypercapnia combined with HH in hypogravity will also need to be researched. CO2 alone has 

widespread effects on human physiology, including: 

 Altering O2 binding: CO2 causes a rightward shift of the oxyhemoglobin saturation curve, so that 

at a given ppO2, less O2 is bound to hemoglobin, resulting in worsened hypoxia especially during 

exercise or if a patient is in shock when O2 demand is increased.  

 Stimulating ventilatory response: CO2 not only increases minute volume and respiratory rate in 

the short term, but it also appears to alter the pH and CO2-dependent set point for respiratory 

drive after chronic exposure to CO2 [14].  

 Cerebral vasodilation: CO2 is a potent cerebral vasodilator and is linked to elevated intracranial 

pressure. Silwka [171] measured cerebral blood flow (CBF) at the middle cerebral artery in healthy 

subjects exposed to 0.7% and 1.2% CO2 environments for more than 23 days and found that CBF 

increased by as much as 35%; moreover, CBF did not return to baseline post-exposure. This 

persistence post-exposure is similar to the persistence of elevated intracranial pressure in some of 

the symptomatic astronauts who were subsequently diagnosed with VIIP, suggesting that CO2 may 

play a contributory or exacerbating role in the VIIP syndrome in long-duration spaceflight. 

 Altered bone homeostasis: CO2 exposure results in a respiratory acidosis that appears to be 

compensated by the kidneys at higher levels (> 3% CO2) and by the bone at lower levels (0.5 to 

1.5% CO2) [172]. The bone, which contains a large reserve of the body’s bicarbonate and calcium 

carbonate, serves as a buffer for acidosis; chronic acidosis can result in the release of calcium 

carbonate and bone breakdown [14]. In addition, chronic acidosis is associated with cell-mediated 

bone resorption and increased urinary calcium excretion due to stimulated osteoclastic activity 

and suppressed osteoblastic activity [123] [173] [174]. Thus, there is concern about chronic 

hypercapnia exacerbating an astronaut’s risk of developing kidney stones. 

 Behavioral health and performance: Anecdotally, ISS crewmembers have been noted by ground 

controllers to be more irritable or lethargic when they are gathered in a small module for public 

affairs events, presumably due to local accumulation of CO2. Terrestrially, mild visuomotor 

impairment has been observed in subjects exposed to 1.2% CO2 [175]. Additionally, there 
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appears to be a dose-response relationship between CO2 level and symptoms such as nausea, 

dizziness, derealization, fear of losing control, and paresthesia [176]. 

8/32 EVA Considerations 
The purpose of the 8/32 environment is to facilitate a high efficiency EVA capability for NASA. Current 

EVA preparation protocols from the Earth normal ISS atmosphere take a minimum of 4.5 to 5 hours 

before a crewmember begins an EVA. This long preparation time leads to a limited number of longer 

EVAs. Short EVAs are impractical and single-person EVAs would be unsafe because there would be no 

rescue capability. Improved efficiencies with suit preparation and checkout may reduce this time, but 

not dramatically. The risk of injury and impaired performance during EVA is directly related to the time 

spent in the EVA suit, so any operational concept that maintains EVA efficiency and productivity while 

minimizing time spent in the suit would be the most effective solution for an Exploration Program with 

heavy EVA needs.  

General Medical Concerns about Frequent EVAs 
Given the main motivation behind a reduced environment such as 8/32 is to facilitate frequent EVAs, 

several general concerns about frequent EVAs are discussed here.  

First, repeated cycling between suit pressure and habitable volume pressure could have detrimental 

effects on the crew. Intermittent hypoxia, defined as repeated episodes of hypoxia interspersed with 

episodes of normoxia, has been studied to enhance exercise performance in athletes, since the so-called 

“live high and train low” method can stimulate erythropoietin and red blood cell production and 

increase ventilation [177]. However, intermittent hypoxia is also associated with increased arterial blood 

pressure through activation of the renin-angiotensin system in healthy subjects [178] and enhanced 

sympathetic and blood pressure responses to acute hypoxia and hypercapnia [177]. Cumulative 

exposure to intermittent hypoxia may produce progressive brain injury and subsequent neurological 

impairment due to metabolic stresses and reactive free radicals during hypoxia [177]. Intermittent 

hypoxia appears to elicit the same ventilatory changes to hypoxia as chronic hypoxia [179]. 

Furthermore, patients with obstructive sleep apnea, who serve as a model for chronic intermittent 

hypoxia, have a high risk of cardiovascular disease, increased levels of inflammatory markers, oxidative 

stress, coagulation, and thrombosis [180] [181].  

Second, EVAs by nature are strenuous activities, and musculoskeletal injuries are more likely as the 

number and frequency of EVAs increase. The current extravehicular mobility unit (EMU) has long been 

associated with shoulder injuries and fingernail delamination; the former is believed to be due to 

scapulothoracic restriction imposed by the planar hard upper torso (HUT) of the EMU. Astronauts have 

also been injured while donning or doffing the EMU due to the awkward arm and shoulder movements 

required to maneuver around the HUT and scye bearings [182]. Efforts to design new spacesuits for 

exploration are attempting to capture the lessons learned from the Shuttle-era EMU, with such 

innovations as a quick donning rear-entry suit. However, even the ideal spacesuit will likely require the 

astronauts to work against a pressure differential of 4.3 psi or greater, thus imposing a risk of 

musculoskeletal wear and tear over time. The more the astronauts work inside a pressurized suit, the 
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more likely they will sustain contusions, sprains, strains, and general musculoskeletal pain. The latter 

could mask or be mistaken for type I DCS, predisposing astronauts to more serious DCS or unnecessarily 

requiring hyperbaric treatment. 

Third, ISS experience has shown that crew well-being and mental health are significantly influenced by 

the operational tempo and a balanced work-rest schedule. The longer exploration missions will require 

the same “marathon” mentality as the ISS compared to the Space Shuttle Program’s “sprint” mentality. 

Activities such as EVA, science, spacecraft maintenance, and public outreach will compete for the 

crewmembers’ time, while daily time for meals, exercise, hygiene, and relaxation must be preserved. 

Behavioral Health Implications for an EVA-Intensive Mission 
Anecdotal comments from Jack Stuster’s review of astronaut journals highlight the heightened level of 

importance and increased stress felt regarding EVAs [183]: 

 “I was pretty exhausted mentally after the EVA, but felt pretty good physically overall” 

 “Today is EVA day. I’m starting to have that I-think-I-must-be-forgetting-something feeling.” 

 “It seems like the EVA stuff bonds folks. We feel each other’s pain and understand the hardships 

associated with what we are doing.”  

 “After our EVAs were over, we had a day and a half off. It was one of the first times in which we 

had some time off 2 days in a row during the missions, so we planned dinner and a movie 

night.” 

Currently, EVAs are some of the most grueling and physically and mentally demanding activities required 

during a space mission. On EVA day, the schedule only accommodates the time for EVA, and the EVA 

astronaut is not required to exercise or complete other tasks. 

Evidence indicates that sleep is significantly reduced during the time before an EVA [19]. Before an EVA, 

it is common for crewmembers to be too “wired” to sleep [17]. General practice has been not to 

schedule 2 consecutive days of EVA unless resources are limited. The proposed mission scenario with 

EVA every day or every other day can result in a heightened stress response, reduced sleep, and/or 

interrupted sleep in addition to the already reduced sleep in microgravity. This could have implications 

for task performance, memory, cognition etc. 

During EVAs, the crew is especially vulnerable to the space environment. A dramatic shift in the 

perception of the mission will happen during an EVA-heavy mission, where astronauts will routinely 

expose themselves to an especially harsh and physically and mentally stressful environment. Increased 

training, mental preparation and safety vigilance will be necessary for this, and may have implications 

for selection as well.  

Decreased Risk of Injury and Impaired Performance during EVA 
Most of the mitigations that reduce DCS risk also apply to the reduction of injury and impaired 

performance during EVA. Moving traditional EVA work to the IVA role, short EVAs and single-person 

EVAs are all made possible by the 8/32 environment in conjunction with the MMSEV. Desert Research 

and Technology Studies (DRATS) in 2008 compared EVA performance for two-suited crewmembers in an 
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unpressurized rover (UPR) versus the same crew with a pressurized rover (MMSEV) using suitports and 

EVA suits as needed to complete mission objectives. Comparing a 1-day traverse in both conditions, the 

MMSEV condition showed a 31% increase in 1-day traverse distance, 57% increase in total productivity, 

470% increase in productivity per EVA hour, 23% increase in boots-on-surface EVA time with a 61% 

decrease in total EVA time, decreased fatigue, and decreased discomfort [184].  

The operational concepts enabled by the 8/32 environment allow significant EVA capability without 

unnecessary time spent in the suit. Less time in the suit also reduces the overall probability of injury. 

Strauss reported a likelihood of a crewmember reporting some medical symptom at 24.6% per Neutral 

Buoyancy Laboratory training session [185]. Scheuring, et al. reported a very similar likelihood of a 

minor injury at 0.24 per EVA [186]. Although these symptoms/injuries ranged from minor to significant, 

it is still a very high reporting rate and indicates that more effort needs to be focused on injury 

mitigation, human performance optimization, and increased EVA efficiency by moving some traditional 

EVA tasks into the IVA environment.  

8/32 Pressure Mediated Considerations 
Not all of the potential human issues from the 8/32 environment are related to the addition of mild 

hypoxia. Some of the hardware used by the astronauts is pressure sensitive. This section will discuss 

issues pertaining to operations at 8 psia irrespective of the FIO2.  

Increased Insensible Water Loss 
This is a well-known aspect of mountaineering due to several factors including humidity, temperature, 

and pressure differences at altitude, but there is evidence that a reduction in pressure alone will 

account for an increased insensible water loss that will need to be replaced with additional drinking 

water [187]. This increased water loss will also need to be considered by the ECLSS team. 

Advanced Food Technology 
The Advanced Food Technology (AFT) project team is investigating the possibility of a partially 

bioregenerative food system on the Martian surface or any other extended surface mission. Fresh fruits 

and vegetables and possibly other commodities can be grown hydroponically in environmentally 

controlled chambers. Other raw commodities can be launched from Earth in bulk and processed into 

edible ingredients. These processed ingredients along with the fresh fruits and vegetables and other 

packaged foods and ingredients can be used to prepare the meals in a galley. It is expected that due to 

“return on investment,” this concept of operations would not occur until a surface habitat is in continual 

operation for multiple years.  

The 8/32 environment can affect operations during a surface mission where food processing (converting 

raw ingredients such as soybeans into tofu) or food preparation beyond simple heating and rehydration 

is conducted. At reduced pressure conditions, water boils at much lower temperatures, which slows the 

heat transfer into the food in the water. The combination of hypogravity and lower pressure may 

improve colloidal stability, but mixing, fluid transport, boiling, condensation, and natural convection are 

all processes likely to be affected negatively by the reduction in gravity. Thus, any equipment evaluation 
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must consider whether the equipment depends on physical phenomena that fail to exist in a 

hypogravity or hypobaric environment like Mars. At reduced pressure conditions, water boils at much 

lower temperatures, which slows the heat transfer into the food in the water. At that pressure, the 

boiling temperature for water is 84°C (183°F). To create safe and acceptable food, cooking and 

processing of food is dependent on time/temperature combinations. Also, certain resulting textures 

come from cooking. For example, if the starch in rice is not gelatinized at 83°C (181oF), then the rubbery 

texture is replaced by dry, granular textures. The AFT team has not conducted any tests at 8 psi, so there 

are no data on what would be required on the surface. A solution may be to use a pressure cooker, but 

that requires extra mass and volume and may not be the answer to all “cooking.” Understanding the 

physical changes in the environment and the impact to food preparation and processing is critical to 

estimate the microbial load throughout the cook, quantify the risk of foodborne illness, and reduce the 

risk to acceptable levels.  

A major research thrust for AFT is identifying a high O2 barrier packaging material. Oxidation in food 

results in quality loss including nutrient breakdown and color and flavor changes. There is actually a 

potential advantage to the 8/32 environment because there would be less O2 to deteriorate the food. A 

technology gap would be what degree does the 8/32 environment affect product quality and whether 

the packaging barrier requirements would be modified significantly.  

Acoustics 
The 8 psia environment might affect acoustics. There is an assumption that lower atmospheric pressure 

in a habitat will reduce the sound intensity of both noise and voice. For example, lower pressures are 

expected to necessitate higher air flow rate through the ECLSS, resulting in increased fan noise, which is 

countered by noise transmission in a thinner air. The balance between several factors related to 

acoustics is unknown since there can be off-setting effects. At a lower pressure, the acoustic radiation 

efficiency is reduced, so noise levels should be lower in general. However, it will be more difficult to 

project your voice. For voice communications, these are off-setting each other and the net effect is 

unknown. There may be an additional effect in hearing (there is with microphone response), which 

would likely require some further investigation, starting with a literature review and followed, if 

warranted, by some additional studies.  

Crew Health Care Systems 
An Exploration equivalent to the ISS Crew Health Care System (CHeCS) will consist of countermeasures, 

environmental health monitoring, and health maintenance. The impact of an 8/32 environment will 

have to be evaluated in terms of each of these elements. 

The Countermeasures System (CMS) will provide aerobic and anaerobic exercise capabilities for 

crewmembers to minimize cardiovascular deconditioning, bone loss, and muscle atrophy due to disuse 

in microgravity. In general, the current CMS on the ISS are believed to be adequate in maintaining 

aerobic fitness and bone mineral density (although preservation of bone architecture is still being 

debated). However, CMS hardware may be reduced in exploration missions given a smaller habitable 

volume compared to the ISS. An 8/32 specific concern is that air pressure-dependent hardware such as 
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the ARED would work less effectively, requiring more mass and/or more frequent cylinder evacuations 

to maintain the same range of resistance. 

Exercise protocols of lower intensity or shorter duration [15] have been proposed for an 8/32 

environment, to preserve consumables and minimize hardware cycling, while reducing the risk of AMS, 

as exercise has been associated with more severe AMS symptoms at simulated altitude [52]. However, 

these potential benefits of reduced exercise protocols must be weighed against the risks of 

cardiovascular and musculoskeletal deconditioning in terms of ability to perform strenuous mission 

tasks (e.g., EVA) and long-term health consequences. 

The Environmental Health System (EHS) will enable the monitoring of air and water quality, toxicology, 

radiation, and acoustics in the spacecraft. Generally speaking, all of the instruments used to perform 

EHS activities will need to be able to operate at lower ambient pressures corresponding to an 8/32 

environment. In particular, the current compound-specific analyzers for combustion products (CSA-CP) 

and compound specific analyzers for oxygen (CSA-O2) are currently rated to operate no lower than 13.9 

psi and 9.5 psi, respectively [188]. These and other air sampling devices will especially need to be 

modified and/or tested to work in an 8/32 environment. 

The Health Maintenance System (HMS) will enable nominal and contingency evaluation of crew health 

and provide treatment for a variety of illnesses and injuries. All medical hardware will also need to be 

certified to operate in an 8/32 environment. Additionally, air-dependent diagnostic hardware may have 

to be modified (e.g., blood pressure cuffs) or substituted with devices that are not air dependent (e.g., 

air-puff tonometer). In terms of therapeutics, medications may or may not be more stable in a reduced 

O2 environment, given its combination with higher space radiation. Capability for supplemental O2 and 

mechanical ventilation will be needed to treat a subset of conditions on the Exploration Medical 

Conditions List – both will have to be compatible with the spacecraft atmosphere. A defibrillator to treat 

sudden cardiac arrest or arrhythmia will also have to pose minimal fire risk.  

Human Health and Performance Disposition of the 8/32 Environment 
Based on the literature described in the paper, it is clear that the addition of HH to the spaceflight 

environment presents substantial concerns for human health and performance. A central theme from 

this review is our collective ignorance of the integrated physiologic response to living and working in a 

hypobaric, mildly hypoxic, hypogravity and possibly hypercapnic environment. The goal for any manned 

vehicle should be to operate under normoxic conditions, if possible. If mild HH is required to facilitate a 

rapid EVA capability, then the right balance needs to be achieved for when to utilize this environment 

and then for what duration.  

With an upfront understanding of the need to maintain low ppCO2 values, future spaceflight vehicles 

can be designed to operate the internal environment much lower than what is currently experienced on 

the ISS. Because elevated CO2 is likely to exacerbate acclimatization to and the symptoms associated 

with hypoxia, we recommend that the CO2 Spacecraft Maximum Allowable Concentration (SMAC) be 

updated to reflect the need for lower ppCO2. Work to update the CO2 SMAC is currently supported by 



36 
 

the Space Medicine and Toxicology groups and is expected to be included with the next open call for 

updates to the Human Integration Design Handbook. 

Unlike ppCO2, nothing can be done to alter the gravity environment of future exploration destinations. 

Gravity is the perfect antidote for many of the negative adaptations to the spaceflight environment. It is 

unclear to what degree lunar or Mars gravity may mitigate some of these negative changes. As we have 

stated previously, our concern is adding HH to the hypogravity (especially microgravity) and elevated 

ppCO2 spaceflight environment. Of possible destinations, the moon and Mars both provide gravity and 

are the DRMs considering employment of the 8/32 environment for longer periods of time. 

Although decreasing ppCO2 and operating in a gravity field both provide positive benefits, only an 

increase in ppO2 will truly reduce the hypoxic dose. Before any forward work evaluating the 8/32 

environment, we recommend that the trade space should be reevaluated for any achievable increase in 

ppO2. Any increase in ppO2 would help alleviate the hypoxia mediated symptoms. Enrichment to 38% O2 

would meet the current NASA-STD-3001 requirements for a cabin ppO2 > 155 mmHg, but enrichment to 

40% O2 at 8 psia would be considered truly normoxic based on PIO2. 

Available ppO2 Enrichment from 8/32 to 8.2/34 
At nearly the same time that work on this report began, the NASA EAWG effort was revisited with a new 

working group title: Exploration Atmosphere Action Team. Within the context of recent Exploration 

Atmosphere Action Team meetings, the HRP 8/32 Tiger Team has been acting as the Human Health and 

Performance (HHP) subteam, which is one of five subteams including Flammability/Materials, ECLSS, 

Operations/EVA and Vehicle Design. The HHP subteam met separately with the other subteams to 

evaluate whether there was any available trade space to enrich the ppO2.  

The 8 psia cabin atmosphere was set by two primary factors: 1) DCS mitigation and 2) suitport 

operations. For DCS mitigation, any increase in cabin pressure would increase prebreathe time and 

therefore would not be acceptable unless the FIO2 could be enriched to maintain the ppN2 at equivalent 

or lower levels than the 8/32 environment. For suitport operations, we learned that the suitport was not 

rigidly locked in to 8 psia, but rather was compatible up to 8.3 psia. Changing the environment from 

8/32 to 8.3/32 does enrich the ppO2 slightly, but the offsetting increase in prebreathe does not make 

this an acceptable choice alone. 

The 32% O2 limit was chosen for flammability concerns. Upon review of the EAWG final report, it was 

stated that a 36% O2 cabin atmosphere would be possible with current materials [1]. Discussions with 

the ECLSS subteam did indicate a need for some control box limits, so we settled on 34% as a target with 

an acceptable upper limit of 36%. The final consensus of the HHP subteam was to increase the PB to 8.2 

psia and the O2% to 34% and suggest a control box of 8.1 to 8.3 psia and 33.5% to 35% O2. This 

improvement was deemed acceptable by the other subteams and has become a consensus 

recommendation for forward work and development from the Exploration Atmospheres Action Team. 

Although the change from a target setpoint of 8/32 to 8.2/34 seems minor, it provides a substantial 

reduction in hypoxic dose without a change to ppN2, which provides physiologic relief without negating 
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any of the operational benefits of suitport and reduced prebreathe. Table 5 provides the comparison of 

key physiologic parameters showing an overall increase of 11 mmHg to PAO2, a reduction of over 610 m 

(2,000 ft) of equivalent air altitude, and no change to ppN2. 

 

8.2/34 Comparison to 10.2/26.5 
One serendipitous finding was that 8.2/34 is almost physiologically equivalent to the atmosphere of 10.2 

psia and 26.5% O2 used on the shuttle. A comparison of the two environments is shown in Table 6 

demonstrating that the two environments are almost equivalent from a hypoxic dose, but that 8.2/34 

presents a much lower tissue N2 saturation level.  

 

Any human health and performance data available from missions employing the 10.2/26.5 environment 

may be helpful toward understanding the implications of employing a mildly hypoxic environment 

during flight. Table 7 describes the number of days at 10.2/26.5 as well as the crew size and total man 

days. Days at 10.2/26.5 were calculated based on the assumption that cabin pressure was reduced on 

flight day 2 and held there until the completion of the last EVA.  

The average duration at 10.2/26.5 was 6 days, with 22 of the 34 missions depressing to 10.2/26.5 for 

somewhere between 5 to 7 days. The longest mission using 10.2/26.5 was for 14 days, but that was only 

one mission and the next-longest missions were 9 days.  

  

Table 5. Comparison 8/32 and 8.2/34 Environments with Reference to Earth Normal Atmosphere 

PB 
psia 

O2% 
ppO2  
mmHg 

PAO2 

mmHg 
EAA 

m (ft) 
ppN2  

mmHg 

14.7 21 160 109 0 600 

Earth normal atmosphere given above for reference 

8.0 32 132 77  1880 (6170) 281 

8.2 34 144 88  1213 (3980) 280 
Difference +12 +11 -667 (-2190) -1 
 

Table 6. Comparison of the 8.2/34 Environment to the Shuttle 10.2/26.5 Atmosphere 

PB 
psia 

O2% 
ppO2  
mmHg 

PAO2 

mmHg 
EAA 
m (ft) 

ppN2 
(mmHg) 

10.2 26.5 140 87 1265 (4150) 388 

8.2 34 144 88 1213 (3980) 280 
Difference +4 +1 -170 -108 
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Table 7. Spaceflight Experience in at the 10.2 psia / 26.5% O2 Environment 

Flight Launch Landing 
Crew 
Size 

Last EVA 
Days at 
10.2/26.5 

Man Days at 
10.2/26.5 

STS-41B 02/03/1984 02/11/1984 5 02/09/1984 6 30 

STS-41C 04/06/1984 04/13/1984 5 04/11/1984 5 25 

STS-41G 10/05/1984 10/13/1984 7 10/11/1984 6 42 

STS-51A 11/08/1984 11/16/1984 5 11/14/1984 6 30 

STS-51D 04/12/1985 04/19/1985 7 04/16/1985 4 28 

STS-51I 08/27/1985 09/03/1985 5 09/01/1985 5 25 

STS-61B 11/26/1985 12/03/1985 7 12/01/1985 5 35 

STS-37 04/05/1991 04/11/1991 5 04/08/1991 3 15 

STS-49 05/07/1991 05/16/1992 7 05/14/1992 7 49 

STS-54 01/13/1993 01/19/1993 5 01/17/1993 4 20 

STS-51 09/12/1993 09/22/1993 5 09/16/1993 4 20 

STS-61 12/02/1993 12/13/1993 7 12/08/1993 6 42 

STS-64 09/09/1994 09/20/1994 6 09/16/1994 7 42 

STS-69 09/07/1995 09/18/1995 5 09/16/1995 9 45 

STS-72 01/11/1996 01/20/1996 6 01/17/1996 6 36 

STS-76 03/22/1996 03/31/1996 6 03/27/1996 5 30 

STS-82 02/11/1997 02/21/1997 7 02/17/1997 6 42 

STS-86 09/25/1997 10/06/1997 7 10/01/1997 6 42 

STS-87 11/19/1997 12/05/1997 6 12/03/1997 14 84 

STS-88 12/04/1998 12/15/1998 6 12/12/1998 8 48 

STS-96 05/27/1999 06/06/1999 7 05/29/1999 2 14 

STS-103 12/19/1999 12/27/1999 7 12/24/1999 5 35 

STS-101 05/19/2000 05/29/2000 7 05/21/2000 2 14 

STS-106 09/08/2000 09/20/2000 7 09/17/2000 9 63 

STS-92 10/11/2000 10/24/2000 7 10/18/2000 7 49 

STS-97 11/30/2000 12/11/2000 5 12/07/2000 7 35 

STS-98 02/07/2001 02/20/2001 5 02/14/2001 7 35 

STS-102 03/08/2001 03/21/2001 7 03/12/2001 4 28 

STS-100 04/19/2001 05/01/2001 7 04/24/2001 5 35 

STS-104 07/12/2001 07/24/2001 5 07/17/2001 5 25 

STS-105 08/10/2001 08/22/2001 7 08/18/2001 8 56 

STS-108 12/05/2001 12/17/2001 7 12/10/2001 5 35 

STS-109 03/01/2002 03/12/2002 7 03/08/2002 7 49 

STS-125 05/11/2009 05/24/2009 7 05/18/2009 7 49 

Total 202 1,252 
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Human Health and Performance Risk Profile Changes from the 8/32 to 8.2/34 

Environment 
The analysis of potential human health and performance risks associated with the 8/32 environment 

indicated that many concerns warranted forward work, and that some concerns – such as an 

exacerbation of the VIIP syndrome – might preclude the use of the 8/32 environment. The change from 

8/32 to 8.2/34 does not affect any of the EVA or pressure mediated concerns; however, for the hypoxia-

related concerns, this change should provide significant improvement to the overall human health and 

performance risk profile. Although a quantified evidence-based likelihood and consequence analysis is 

not provided for each of the hypoxia mediated concerns, it is likely that a comparison of 8/32 to 8.2/34 

would show a reduction in the likelihood and/or consequence for every hypoxia mediated symptom. 

This ppO2 improvement may be enough to even eliminate some of the potential concerns. 

One additional implication is that the independent pressure effect on hypoxic symptoms seems to be a 

function of hypoxic dose. The greater the hypoxic dose, the less an NH simulation is valid. The 8.2/34 

environment with an EAA of approximately 1,219 m (4,000 ft) might be at a threshold for which 

simulating this environment could adequately be performed using a reduction in the FIO2 rather than 

having to use an O2-enriched capable hypobaric chamber. 

Based on the acceptance of 8.2/34 within the NASA engineering  and materials community and the 

expected human health and performance risk reduction, it is recommended that forward work including 

human research should be performed at the revised 8.2/34 environment rather than 8/32.  

Although the shift from 8/32 to 8.2/34 reduces the general concerns for impaired human health and 

performance, it does not eliminate all these concerns. Therefore, the overall amount of initial 

recommended forward work is likely to be the same in either environment. The difference is that there 

is a greater expectation that these studies may demonstrate the acceptability of the 8.2/34 environment 

and thus require less follow-up work and environmental countermeasure development. 

Recommendations and Forward Work  
This section will describe the suggested research needs and forward work to prepare for this 

environment. In some cases, this work is already being done and we have highlighted what specific HRP 

risks need to be better understood. The remaining recommendations will focus on suggested new areas 

of human research and will describe technical recommendations for implementing the 8.2/34 

environment, including considerations for how to transition to this environment. 

Additional Analyses Needed for 8.2/34 Environment 
The primary purpose of this paper was to evaluate the human health and performance risks associated 

with the 8/32 environment. With a shift now to the 8.2/34 environment, we suggest two additional 

analyses as follow-on efforts to this paper. 

1. Literature review of very mild altitudes up to 1,830 m (6,000 ft). 
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2. Mining of human health and performance data from the 10.2/26.5 shuttle exposures. This effort 

would provide a look into the short-term effects of mild hypoxia in the spaceflight environment. 

Current Research Efforts in Need of Better Understanding 
Certain risks are not currently well understood. In some cases, it was the uncertainty associated with 

these risks more than the addition of HH that was of concern. These current HRP risks include VIIP, 

immune dysfunction and OSaD, which are not well understood, and many of the challenges of the 

Exploration-class missions including longer durations and mild hypoxia and the cycling between the 

hypoxic IVA and slightly hyperoxic EVA environment. Continued research into the elevated ppCO2 levels 

on the ISS and how this increased level affects human health and performance is needed. Additional 

research not directly associated with, but highly related to, the 8.2/34 environment would be the work 

needed to mitigate the risk of crewmember injury during EVA, work done to optimize performance in 

the EVA suit, and human factors engineering efforts to optimize vehicles for habitability. 

Proposed New Research Needs  
This section provides initial recommendations for research studies to aid our understanding of human 

adaptation to the 8.2/34 environment in conjunction with the spaceflight environment. These research 

needs are described at a very high level. 

1. Validation of the 8.2/34 DCS mitigation strategy through hypobaric chamber studies – if DCS is 

not successfully mitigated with the 8.2/34 environment, then there is a need to reevaluate the 

atmosphere, operational concepts, prebreathe requirements, EVA frequency, and many other 

factors that are related to every other follow-on research study. Therefore, we recommend that 

the validation of the 8.2/34 environment for DCS mitigation is recommended to be the first 

major study associated with the 8/32 environment. 

2. Short-term (7- to 14-day) exposures to the 8.2/34 environment using a hypobaric chamber that 

include a mission-like timeline, EVA simulations and the expected level of ppCO2 also included. 

These 1- to 2-week exposures would allow several risks to be evaluated simultaneously, 

including VIIP, AMS, sensorimotor, sleep, OSaD, exercise, cardiovascular, immune, nutrition, 

bone, behavioral health, and possibly other concerns. Much of this work could be combined into 

work described in recommendation #1. Where possible, it would be beneficial to include an 

additional exposure using NH to evaluate the possibility of an independent pressure effect 

worsening the hypoxic dose at 8.2/34. 

3. Longer-term exposures (>14 days) to the 8.2/34 environment. Results of recommendations #2 

will help to determine what risks need further evaluation. Although hypobaric chamber usage is 

preferable, many of these evaluations could be performed with NH simulations.  

4. Short- and long-term 8.2/34 exposures including bed rest. Although hypobaric chamber usage is 

preferable, these evaluations could possibly be performed with NH simulations.  

5. Cell culture oxidative stress studies using bioreactor and the appropriate swings between the 

IVA and EVA environments.  

6. Food preparation testing at 8.2 psia is needed to ensure palatability and ensure acceptable 

microbial loads are met. 
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7. Antarctica offers a mission-like analog to spaceflight that also includes a hypobaric environment 

(2,834 m [9,300 ft]) that may provide an opportunity to evaluate some concerns discussed in 

this paper. 

Flight Demonstration of the 8.2/34 Environment 
Upon completion of the validation of the DCS mitigation strategy and with an initial understanding of 

the short-term hypoxic symptoms, we recommend that the 8.2/34 environment and EVA operations be 

demonstrated in flight at a location with a margin of safety. This could include the ISS or a lunar 

waypoint habitat. 

An alternative to using the 8.2/34 environment would be to employ the physiologically similar 

environment of 10.2/26.5 using the ISS airlock or some other modifiable habitable element. The 

10.2/26.5 environment is already certified for use in the ISS airlock and would allow us to study the 

effects of an alternative atmosphere mixed with the spaceflight environment. If creating a habitable 

element on the ISS is not feasible, an NH simulation using a flight-compatible portable reduced O2 

breathing device could be considered. The crewmember would wear an oronasal facemask connected to 

the reduced O2 source. This may preclude continuous and longer-duration exposures, but could provide 

valuable feedback on how short-duration exposure to hypoxia in the spaceflight environment affects 

cognitive performance and neurophysiology. 

General Technology Recommendations 
This section will recap some of the technical recommendations suggested to certify hardware and to 

mitigate some of the negative physiologic effects of the 8.2/34 and spaceflight environment. 

 Improved CO2 scrubbing will be needed for human habitation of a mildly hypoxic environment 

and is perceived to be quite possible by the NASA engineering community. 

 Guidelines for the ECLSS control box for the 8.2/34 environment need to be further defined. The 

expectation is that the control box can operate in a tighter band around the setpoint than the ± 

0.2 psi and ± 2% O2 described in the EAWG report. 

 Guidance on the rate of change from one atmospheric composition to another will need to be 

generated for the ECLSS controls. 

 Existing CHeCS hardware, new medical hardware, exercise countermeasures, and human 

research equipment will need to be updated to ensure proper operation in the reduced 

pressure of the 8.2 psia environment. 

 Finally, the IMM will need to updated to reflect changes in disease incidence and treatment 

based on the 8.2/34 environment. 

Considerations for Transitioning Between Environments 
This section will summarize some suggested mitigation strategies that will help alleviate symptoms or 

prepare the astronaut to occupy the 8.2/34 spaceflight environment. Gradual decompression from 14.7 

psia to 8.2 psia will diminish many of the acute symptoms such as AMS and hypoxic-related sleep 

problems. Supplemental O2 should be available during vehicle decompressions and throughout the 
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length of the mission should certain crewmembers not adapt as readily as others. This supplemental O2 

will also be used as DCS prevention during this depressurization. 

An exact understanding of atmospheric and tissue inert gas exchange does not yet exist to precisely 

define when the inert gas tension in tissues comes into a new equilibrium after the breathing 

environment has changed. When a significant pressure reduction is used to reduce the tissue N2 tension, 

then there is the additional complication of creating “silent bubbles” in the body that then hinder 

normal tissue N2 exchange with the atmosphere. In the case of the 8.2/34 environment, the pressure 

reduction from 14.7 psia to 8.2 psia is done in concert with an increase in FIO2 from 21% to 34%. Both of 

these changes reduce ambient ppN2 from 600 to 280 mmHg, but there is some uncertainty on when 

tissue N2 tension comes into a new equilibrium. If we accept that a 360-minute theoretical half-time 

tissue compartment is key to our DCS applications, then the mathematics of simple exponential decay 

says that you need four half times (24 hr) to account for 94% of the difference between the initial and 

final tissue N2 tension. Six half times (36 hr) brings the difference to 98% and by 8 half times (48 hr), the 

difference is negligible.  

Based on research experience from the shuttle 10.2 psia staged denitrogenation protocol, it was clear 

that a direct depress to 10.2 psia created “silent bubbles” that manifested 12 to 16 hours later as early-

onset venous gas emboli (VGE) and early onset Type II DCS symptoms while at the EVA pressure of 4.3 

psia. A 60-minute prebreathe was instituted such that the first decompression to 10.2 psia would not 

theoretically supersaturate the 360-minute half-time compartment; the computed tissue ratio was 1.0. 

This removed the early-onset VGE and DCS in subsequent tests of the staged protocol [189]. In keeping 

with this same philosophy, preliminary analysis indicates the need to implement a 180-minute 

prebreathe before depressurization from 14.7 to 8.2 psia to keep the computed tissue ratio at 1.0. Since 

100% O2 is used for the 18-minute prebreathe, the tissue N2 tension is lower than it would be if the 

astronaut was just exposed for 180 minutes to the 8.2/34 environment. So the computed time to 

achieve equilibrium to the 8.2/34 environment is reduced to 45 hours. If an EVA was to be performed 

before saturation at 8.2/34, then additional prebreathe beyond the expected 15 minutes would be 

needed, possibly as much as 30 minutes for the first EVA.  

Crewmembers will need to be trained to understand the symptoms of hypoxia. When the application of 

the 8.2/34 environment is to be employed early in the mission phase, the crewmembers will have to 

adapt acutely to the spaceflight and hypoxic environment at the same time. Critical tasks should be 

avoided and workload stress should remain low during the atmospheric transition period.  

Although hypoxic pre-conditiong is not a mitigation for DCS, it is a technique that uses bouts of hypoxic 

exposure before ischemic insults. This may not directly apply to the astronaut in the spaceflight 

environment, but the effect of pre-exposure to the hypoxic stimulus and how it prepares people to 

tolerate the hypoxic environment on subsequent trials has also been discussed. The degree of hypoxia, 

duration of exposure, and timing of the exposure would need further literature review before 

implementation in the crew training and mission preparation phases.  
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Conclusion 
EVA is at the core of a manned space exploration program. With the 8/32 environment, NASA gains the 

capability for efficient EVA with low risk of DCS, but accrues the additional human health and 

performance risks associated with the addition of HH to spaceflight environment. This literature review 

of the human health and performance risks associated with the 8/32 cabin environment indicated many 

potential areas of concern including increased intracranial pressure, visual impairment, sensorimotor 

dysfunction, and oxidative damage. Forward work would also include validating the DCS mitigation 

strategy, identifying/treating AMS, developing new exercise protocols, effectively preparing food at 8 

psia, ensuring quality sleep, and preventing suit-induced injuries.  

The available engineering trade space provides the opportunity to move from 8/32 to 8.2/34, which 

increases the PAO2 by 11 mmHg and decreases the EAA by more than 610 m (2,000 ft). This significant 

improvement may reduce the likelihood and/or consequence of each discussed hypoxic symptom. 

Although the 8.2/34 environment is an improvement from the 8/32 environment, it does not eliminate 

all human health and performance concerns and needs to be evaluated through appropriately simulated 

research studies before flight implementation. 
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